

Contents lists available at ScienceDirect

Journal of Solid State Chemistry

journal homepage: www.elsevier.com/locate/jssc

The ternary system cerium-rhodium-silicon

Alexey Lipatov ^{a,b}, Alexander Gribanov ^{a,c,*}, Andriy Grytsiv ^a, Sergey Safronov ^c, Peter Rogl ^a, Julia Rousnyak ^c, Yurii Seropegin ^c, Gerald Giester ^d

^a Institute of Physical Chemistry, University of Vienna, Währingerstrasse 42, A-1090 Wien, Austria

^b Materials Science Department of the Moscow State University, Leninskie Gory 1, GSP-1, 119991 Moscow, Russia

^c Chemistry Department of the Moscow State University, Leninskie Gory 1, GSP-1, 119991 Moscow, Russia

^d Institute of Mineralogy and Crystallography, University of Vienna, Althanstrasse 14, A-1090 Wien, Austria

ARTICLE INFO

Article history: Received 29 November 2009 Received in revised form 27 January 2010 Accepted 30 January 2010 Available online 4 February 2010

Keywords: Ternary system Ce–Rh–Si Ternary silicides Phase equilibria at 800 °C X-ray single crystal and powder diffraction

ABSTRACT

Phase relations have been established in the ternary system Ce-Rh-Si for the isothermal section at 800 °C based on X-ray powder diffraction and EPMA on about 80 alloys, which were prepared by arc melting under argon or by powder reaction sintering. From the 25 ternary compounds observed at 800 °C 13 phases have been reported earlier. Based on XPD Rietveld refinements the crystal structures for 9 new ternary phases were assigned to known structure types. Structural chemistry of these compounds follows the characteristics already outlined for their prototype structures: τ_7 —Ce₃RhSi₃, (Ba₃Al₂Ge₂-type), τ_8 —Ce₂Rh_{3-x}Si_{3+x} (Ce₂Rh_{1.35}Ge_{4.65}-type), τ_{10} —Ce₃Rh_{4-x} $Si_{4+x} \ (U_3Ni_4Si_4-type), \ \tau_{11} \\ -CeRh_6Si_4 \ (LiCo_6P_4-type), \ \tau_{13} \\ -Ce_6Rh_{30}Si_{19.3} \ (U_6Co_{30}Si_{19}-type), \ \tau_{18} \\ -Ce_4Rh_4Si_3 \\ -Ce_4Rh_4Si_4 \\ -Ce_4Rh_4S$ $(Sm_4Pd_4Si_3-type)$, τ_{21} —CeRh₂Si (CeIr₂Si-type), τ_{22} —Ce₂Rh_{3+x}Si_{1-x} (Y₂Rh₃Ge-type) and τ_{24} —Ce₈ $(Rh_{1-x}Si_x)_{24}Si$ (Ce₈Pd₂₄Sb-type). For τ_{25} —Ce₄ $(Rh_{1-x}Si_x)_{12}Si$ a novel *bcc* structure was proposed from Rietveld analysis. Detailed crystal structure data were derived for τ_3 —CeRhSi₂ (CeNiSi₂-type) and τ_6 —Ce₂Rh₃Si₅ (U₂Co₃Si₅-type) by X-ray single crystal experiments, confirming the structure types. The crystal structures of τ_4 —Ce₂₂Rh₂₂Si₅₆, τ_5 —Ce₂₀Rh₂₇Si₅₃ and τ_{23} —Ce_{33,3}Rh_{58,2-55,2}Si_{8,5-11.5} are unknown. High temperature compounds with compositions $Ce_{10}Rh_{51}Si_{33}$ ($U_{10}Co_{51}Si_{33}$ -type) and CeRhSi (LaIrSi-type) have been observed in as-cast alloys but these phases do not participate in the phase equilibria at 800 °C.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Six ternary compounds from the title system, CeRh₂Si₂ (ThCr₂Si₂-type) [1], CeRhSi₃ (BaNiSn₃-type) [2,3], CeRhSi₂ (CeNiSi₂-type), CeRh₃Si₂ (CeCo₃B₂-type), Ce₂Rh₃Si₅ (U₂Co₃Si₅-type) [4] and Ce₂RhSi₃ (Er₂RhSi₃-type) [5] were described prior to the first investigation of the entire Ce–Rh–Si phase diagram at 600 °C by Shapiev [6]. In his work 17 ternary compounds were found, however, only the approximate composition for 11 new compounds was derived from phase analysis on X-ray powder photographs: Ce₁₀Rh₇₅Si₁₅, Ce₁₀Rh₆₀Si₃₀, Ce₁₀Rh₅₅Si₃₅, Ce_{27.5}Rh_{43.5}Si₂₉, Ce_{33.3}Rh_{56.3}Si₁₀, Ce_{33.3}Rh_{46.7}Si₂₀, Ce_{33.3}Rh_{33.3}Si_{33.4}, Ce_{33.3}Rh_{26.3}Si₄₀, Ce₄₀Rh₁₅Si₄₅, Ce₄₅Rh₂₅Si₃₀, Ce_{51.5}Rh₄₀Si_{8.5}. Since 1993 additional knowledge has been acquired and crystal structures of several ternary phases were determined, i.e. Ce₆Rh₃₀Si₁₉ (Sc₆Co₃₀Si₁₉-type) [7], Ce₂Rh₁₂Si₇ (down-type) [8], Ce₃Rh₃Si₂ (own-type) [9], CeRh₂Si

(inverse CeNiSi₂-type) [10], Ce₃Rh₂Si₂ (La₃Ni₂Ga₂-type) [11]. More accurate version of the crystal structure was established for CeRh₃Si₂ (ErRh₃Si₂-type—an orthorhombic superstructure of CeCo₃B₂ [12]) and for Ce₂RhSi₃ (Er₂RhSi₃-type) a higher symmetry from $P\bar{6}2c$ to P63/mmc was proposed [13]. Physical properties of several compounds from the Ce-Rh-Si system were investigated and revealed interesting electrical and/or magnetic anomalies, such as heavyfermion behavior (including non-centrosymmetric heavy-fermion superconductivity in CeRhSi3-see [14] and for latest investigations [15-20]) and/or Kondo-lattices as well as valence instabilities, e.g. for CeRh₂Si₂ [21-33], CeRhSi₂ [34-36], Ce₂RhSi₃ [5,37-42], CeRh₂Si [43,44], Ce₂Rh₃Si₅ [45,46], CeRh₃Si₂ [47-49], Ce₃Rh₃Si₂ [50] and Ce₂Rh₂Si₅ [51] (for the latter phase no crystal structure data were given). Physical properties of four compounds with known crystal structure, i.e. Ce₂Rh₁₅Si₇, Ce₂Rh₁₂Si₇, Ce₆Rh₃₀Si₁₉ and Ce₃Rh₂Si₂, have not been reported yet.

As the early data presented by Shapiev [6] do not fully comply with information hitherto given, we reinvestigated the phase equilibria in the Ce–Rh–Si system. In the present paper we provide comprehensive knowledge on the phase equilibria at 800 °C and crystal structures of intermetallics. The annealing temperature of 800 °C was chosen in order to achieve enhanced

^{*} Corresponding author at: Chemistry Department of the Moscow State University, Leninskie Gory 1, GSP-1, 119991 Moscow, Russia. Fax: +7 495 939 0171.

E-mail address: avgri@mail.ru (A. Gribanov).

^{0022-4596/\$ -} see front matter \circledcirc 2010 Elsevier Inc. All rights reserved. doi:10.1016/j.jssc.2010.01.029

Crystallographic data of solid phases in the Ce-Rh-Si system.

Temperature range (C) Promage a b c (Rec.) main 0.412 [67] (Rec.) W 0.31910 [67] (Rec.) 0.0610 0.31910 [67] (Rec.) 0.0610 0.3610 1.1857 [67] 1.20 [67] [61] 7.061 0.3610 [67] [63] 7.061 0.3610 [67] [63] 7.061 0.3610 [67] [64] 7.078 1.367 [69] [63] 6.3166 1.373 [69] [63] 6.788 0.7780 0.41857 $\pi_{aac} 0.31691 = 0.027 [63] 6.789 0.7780 0.43857 \pi_{aac} 0.31691 = 0.027 [63] 1.367 1.367 \pi_{aac} 0.31691 = 0.027 1.367 [63] 1.357 \pi_{aac} 0.31691 = 0.027 1.357 \pi_{aac} 0.31691 = 0.027 [63] 1.357 \pi_{aac} 0.31691 = 0.0256 0.33857 1.367 \pi_{aac} 0.3666 $	Phase	Space group	Lattice parameters (nm)			Comments
$ \begin{array}{cccc} ccccccccccccccccccccccccccccccc$	Temperature range (°C)	Prototype	a	b	с	
model (model (Ref) (Ref) (Ref)model (Ref)1000 (Ref) <td>(δCe)</td> <td>lm3m W</td> <td>0.412</td> <td></td> <td></td> <td>[67]</td>	(δCe)	lm3m W	0.412			[67]
(non) (1-07)(1) (2-17)(2) (2-17)(2) 	(γCe)	Fm3m	0.51610			[67]
ores 	(βCe)	P6 ₃ /mmc	0.36810		1.1857	[67]
Sint (F) (B) (B) (B) (B)Ha (B) (B) (B)(B) (B) (B)(B) (B) (B)(B) (B) (B)(B) (B) (B)(B) (B) (B)(B) (B) (B)(B) (B) (B)(B) (B) (B)(B) (B) (B) (B)(B) (B) (B) (B) (B)(B) (B) (B) (B)(B) (B) (B) (B) (B)(B) (B) (B) (B) (B) (B) (B)(B) (B) (B) (B) (B) (B) (B) (B)(B) ((αCe)	αLa Fm3m	0.485			[67]
	≤ -177 [67] (Rh)	Cu Fm3m	0.38032			[67]
2141 (c) C (dumma) C (28) (3) (6) 2 (c) C (c) C (c) C (c) (C) <td>≤ 1963 [67] (Si)</td> <td>Cu Fm3m</td> <td>0.54306</td> <td></td> <td></td> <td>[67]</td>	≤ 1963 [67] (Si)	Cu Fm3m	0.54306			[67]
≈ 1280) Cigls O.7878 1.378 O.5.2.5.1 [06] at 600 °C Cesls 0.73532 1.378 PERP 0.5.2.5.1 [06] at 600 °C ∞ 1335 [59] U/SS 0.73532 0.4367 [59] ≈ 1335 [59] U/SS 0.73908 (4) 0.4367 [59] ≈ 1335 [59] U/SS 0.73908 (4) 0.4367 [59] ≈ 1335 [59] U/SS 0.73908 (4) 0.4367 [59] ≈ 1335 [59] U/SS 0.73916 (1) 0.33951 (1) 0.5051 (5) ≈ 1335 [59] Z/SS 0.33951 (1) 0.33951 (1) 0.33951 (1) CeSi D.100 (1) 0.4413 (1) 0.33951 (1) 0.3391 (1) CeSi Minan 0.4109 0.413 (1) 1.3304 (1) ∞.616 (1) CeSi Minan 0.4102 (1) 1.3313 (1) ∞.616 (1) CeSi Minan 0.4102 (1) 1.3313 (1) ∞.616 (1) CeSi Minan (1) 0.4197 (1) 1.3313 (1) ∞.616 (1) CeSi Minan (1) 0.4197 (1) 1.3313 (1) ∞.616 (1) CeSi Minan (1) 0.005 (1) 1.3313 (1) ∞.616 (1) CeSi Minan (1) 1.220 (1) 0.4137 (1) 1.3	$\leq 1414 [67]$ Ce ₅ Si ₃	C (diamond) I4/mcm	0.7868		1.373	[68]
0.7873 1.367 x_{au} - 0.5 [69] at 000 °C Ce,Si, 1.357 x_{au} - 0.5 [69] at 000 °C Ciss 0.7786 0.7786 0.4367 Ciss 0.7896 0.2007 1.907 Ciss 0.7986 0.2007 1.907 Ciss 0.7948(2) 0.3075(1) 0.5061(2) 1.91 Ciss Pama 0.2282 0.3075(1) 0.5061(2) 1.91 Ciss Cmem Vig 0.4193 0.3075(1) 0.5061(2) 1.91 Ciss Innu 0.4193 0.3075(1) 0.5061(2) 1.91 Ciss Innu 0.4120(1) 0.4113 1.301(1) 2.9169 Ciss Innu 0.4120(1) 0.4113(1) 1.301(1) 2.9169 Ciss Ints 0.4120(1) 0.4113(1) 3.917(1) 2.9169 Ciss Ints 0.4120(1) 0.4113(1) 3.917(1) 2.9169 Ciss Ints 0.4120(1) 0.4113(1) 3.917(1) 3.916(1)	$\leq 1260 [59]$ $Ce_5(Si_{1-x}Rh_x)_3$	Cr ₅ B ₃	0.7878		1.367	[59] 0≤x≤0.3 [69] at 600 °C
$ \begin{array}{cccc} cccc} ccccc} cccccccccccccccccc$	$Ce_{3}Si_{2} \le 1335 [59]$ $Ce_{5}Si_{4} \le 1500 [59]$ $CeSi \le 1630 [59]$	P4/mbm U ₃ Si ₂ P4 ₁ 2 ₁ 2 Zr ₅ Si ₄ Pnma FeB	0.7873 0.78592 0.7780 0.77908(4) 0.7936 0.79438(3) 0.8298 0.82832(3)	0.3961 0.39756(1)	1.3796 1.3657 0.4367 0.43690(3) 1.5029 1.5098(1) 0.5959 0.59601(2)	x=0.15 [69] at 600 °C x _{max} =0.3 [69] at 600 °C [59] d [59] d [59] d
	CeSi _{1.34}	$Cmcm V_2B_3$ (Nd ₂ Si _{2 v})	0.44035	2.48389	0.39517	[60] at 35 K
$\begin{array}{cccc} cccc} ccccc} & 4, a a a b a b a b a ccccc} & 1.391 & x = 0 [59] & x = 0^4 \\ ccccccccccccccccccccccccccccccccccc$	CeSi _{1.67} ≤ 1725 [59]	Imma GdSi _{2-x}	0.4109 0.4190 0.41220(1)	0.4189 0.4113 0.41913(1)	1.3917 1.3906 1.3914(1)	Si-saturated (sat.) [59] Rh-sat. [59] d
	$CeSi_{2-x} \leq 1575 [59]$ $Ce(Si_{1-y}Rh_y)_{2-x}$	141/amd ThSi2	0.4192 0.41897(3) 0.41907(1) 0.41845(1) 0.41781(1)		1.3913 1.3932(1) 1.3937(1) 1.4025(1) 1.4138(1)	x=0 [59] $x=0^{d}$ $x=0, y=0.06^{d}$ $x=0, y=0.105^{d}$ $x=0, y_{max}=0.144^{d}$
$ \begin{array}{ccc} C_{2} \mathrm{Rb}_{5} & Pd/nc \\ \leq 725 [61] & Pu \mathrm{Rb}_{3} \\ \leq 725 [61] & Rd \\ \leq 725 [61] & Er_{3} \mathrm{Ni}_{2} & 0.8858 & I.676 & [72] \\ \leq 61 \\ \leq 61$	Ce ₇ Rh ₃ ≤ 755 [61]	P6 ₃ mc Th ₇ Fe ₃	1.0051 1.0005 1.0023		0.6378 0.6356 0.6376	[61] [70] [71]
$ \begin{array}{c c c c c } & \mu^{3}, & \mu^$	Ce ₅ Rh ₃ < 725 [61]	P4/ncc PucRha	1.1260		0.6450	[61]
$ \begin{array}{cccc} \leq 815 \ [61] & E_{7}N_{2} & 0.8835 & 1.676 & [72] \\ [72] (Ce_{7}Rh_{4} & Pmaa & 0.7467 & 1.4841 & 0.7624 & [61] \\ \leq 955 \ [61] & Sm_{5}Ge_{4} & 0.7437 & 1.4841 & 0.7624 & [61] \\ & 0.7694 & 0.7604 & 0.7604 & [73] \\ [73] (CeRh_{2} & Cmcm & 0.3845 & 1.0966 & 0.4174 & [61] \\ \leq 1055 \ [61] & CrB & 0.3855 & 1.0966 & 0.4153 & [75] \\ < 1055 \ [61] & CrB & 0.3855 & 1.0966 & 0.4174 & [61] \\ [74] (CeRh_{2} & Fd \ 3m & 0.7545 & 4log at 0.5845 & 1.0946(2) & 0.4174(1) & d \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Ce ₃ Rh ₂	RĪ	0.8858		1.6794	[61]
$ \begin{array}{ c c c c } & \begin{tabular}{ c c c c c c c } & \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	≤ 815 [61]	Er ₃ Ni ₂ Pnma	0.8835 0.7467	1 4841	1.676 0.7624	[72] [61]
$ \begin{array}{ c c c c c c } CeRh & Cmcm & 0.3845 & 1.0964 & 0.4174 & [61] \\ \leq 1055 [61] & CrB & 0.3845 & 1.0966 & 0.4152 & [74] \\ & 0.3845 & 1.0966 & 0.4152 & [74] \\ & 0.3844 & 1.0946 & 0.4174 & [61] \\ & 0.3844 & 1.0946 & 0.4174 & [61] \\ & 0.3844 & 1.0946 & 0.4174 & [61] \\ & 0.3844 & 1.0946 & 0.4174 & [61] \\ & 0.3844 & 1.0946 & 0.4174 & [61] \\ & 0.3844 & 1.0946 & 0.4174 & [61] \\ & 0.3844 & 1.0946 & 0.4174 & [61] \\ & 0.3844 & 1.0946 & 0.4174 & [61] \\ & 0.4174 & [75] & [76] & [76] & [76] \\ & 0.7538 & [75] & [76] & [76] & [76] \\ & 0.7550 & [77] & [78] & [78] \\ & 0.7550 & [77] & [78] & [78] \\ & 0.75287 & [77] & [78] & [78] \\ & 0.75287 & [77] & [78] & [78] \\ & 0.75287 & [77] & [78] & [79] & [79] \\ & 0.7520 & [77] & [79] & [79] & [79] \\ & 0.57520 & [79] & [79] & [79] & [79] \\ & 0.57520 & [79] & [79] & [79] & [79] \\ & 0.57520 & [79] & [79] & [79] & [79] \\ & 0.4021 & [79] & [79] & [79] \\ & 0.4022 & [79] & [79] & [79] \\ & 0.4022 & [70] & [79] & [79] \\ & 0.4021 & [70] & [79] & [70] \\ & 0.4022 & [70] & [70] & [80] \\ & 0.4020 & [70] & [80] & [70] \\ & 0.4021 & [70] & [70] & [80] \\ & 0.4021 & [70] & [70] & [80] \\ & 0.4021 & [70] & [80] & [70] \\ & 0.4021 & [70] & [80] & [70] \\ & 0.4021 & [70] & [80] & [81] \\ & 0.4021 & [70] & [80] & [81] \\ & 0.4021 & [70] & [80] & [81] \\ & 0.4021 & [70] & [80] & [81] \\ & 0.4021 & [70] & [80] & [81] \\ & 0.4021 & [70] & [80] & [81] \\ & 0.4021 & [70] & [80] & [81] \\ & 0.4021 & [70] & [80] & [81] \\ & 0.4021 & [70] & [80] & [81] \\ & 0.4021 & [70] & [80] & [81] \\ & 0.4021 & [70] & [80] & [81] \\ & 0.4021 & [70] & [80] & [81] \\ & 0.4021 & [70] & [80] & [81] \\ & 0.4021 & [70] & [80] & [81] \\ & 0.4021 & [70] & [80] & [81] \\ & 0.4021 & [70] & [80] & [81] \\ & 0.4021 & [70] & [80] & [81] \\ & 0.4021 & [70] & [80] & [81] \\ & 0.4021 & [70] & [81] & [70] & [81] \\ & 0.4021 & [70] & [81] & [70] & [81] \\ & 0.4021 & [70] & [81] & [70] & [81] \\ & 0.4021 & [70] & [81] & [70] & [81] \\ & 0.4021 & [70] & [70] & [81] & [70] & [70] & [81] \\ & 0.4011 & [70] & [70] & [70] & [70] & [70] & [70] & [70] \\ & 0.81 & [81] & [70] & [70] $	≤ 955 [61]	Sm ₅ Ge ₄	0.7434	1.486	0.7604	[73]
$\begin{array}{c ccr} CeRh_2 & Fd \ 3m & 0.7545 & Alloy at \ 5d \ 4k \ h[61] \\ \leq 1450[61] & MgCu_2 & 0.7538 & [76] \\ 0.7537 & [76] \\ 0.7534 & Ce-sat, [76] \\ 0.7530 & [77] \\ 0.7539 & [77] \\ 0.7539 & [77] \\ 0.75387(2) & Rh-sat, [76] \\ 0.75256(2) & Rh-sat, [76] \\ 0.5256(2) & Rh-sat, [76] \\ 0.52520(5) & Rh-sat, [76] \\ 0.52520(5) & Rh-sat, [76] \\ 0.75250(2) & Rh-sat, [76] \\ 0.4020 & [76] \\ 0.4020 & [76] \\ 0.4020 & [76] \\ 0.4020 & [76] \\ 0.4020 & [76] \\ 0.4020 & [76] \\ 0.4021 & Rh-sat, [76] \\ 0.4020 & [76] \\ 0.4020 & [76] \\ 0.4021 & [76] \\ 0.402$	CeRh ≤ 1055 [61]	Cmcm CrB	0.7486(1) 0.3845 0.3852 0.3855 0.3844(1)	1.4788(2) 1.0964 1.0986 1.0966 1.0946(2)	0.4174 0.4152 0.4153 0.4174(1)	[61] [74] [75] d
$\begin{array}{c c c c c c c } Ce(Rh_{1-x}Si_{x})_2 & & & & & & & & & & & & & & & & & & &$	CeRh ₂ ≤ 1450[61]	Fd 3m MgCu ₂	0.7545 0.7543 0.7538 0.7547 0.7534 0.7550 0.7539 0.75387(2)			Alloy at 65 at% Rh [61] Alloy at 70 at% Rh [61] [76] Ce-sat. [76] Rh-sat. [76] [77] [78] Rh-sat. ^d
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$Ce(Rh_{1-x}Si_x)_2$		0.75256(2)			$0 \le x \le 0.10^{d}$ $x = 0.04^{d}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CeRh ₃ ≤ 1550 [61]	Pm3m Cu₃Au	0.4022 0.4023 0.4012 0.4020 0.4024			Alloy at 70 at% Rh [61] [79] [70] [76] [80]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CeRh ₃ Si _{1-x}		0.40455(1) 0.40616(1) 0.40912(1)			$0.81 \le x \le 1.00^{d}$ $x = 0.91^{d}$ $x = 0.87^{d}$ $x_{min} = 0.81^{d}$
≤ 1470 [62] Rh ₅ Ge ₃ 0.53181(1) 1.01257(2) 0.38966(1) d Rh ₂₀ Si ₁₃ P6 ₃ /m 1.1851 0.3623 [82]	Rh₂Si ≤ 1622 [62] Rh₅Si₃	Pnma αCo₂Si Pbam	0.5404 0.54109(1) 0.5322	0.3930 0.39294(1) 1.0126	0.7390 0.73855(1) 0.3897	[81] d [81]
	≤ 1470 [62] Rh ₂₀ Si ₁₃ 1050 1225 [62]	Rh ₅ Ge ₃ P6 ₃ /m Pb Si	0.53181(1) 1.1851 1.1852(1)	1.01257(2)	0.38966(1) 0.3623	d [82] d

Table 1 (continued)

Phase	Space group	Lattice parameters (nm)			Comments	
Temperature range (°C)	Prototype	а	b	С		
Rh ₃ Si ₂	P3m1 Pb Si	0.3965		0.5051	[81]	
aRhSi	Pnma	0 5545	0 3067	0.6376	Rh-sat 498 at% Si [81]	
< 1030 [62] Si-sat	MnP	0.555	0 3084	0.6350	Si-sat 50.7 at% Si [81]	
< 1080 [62] Bh-sat	141111	0.55466(5)	0.30707(2)	0.63658(5)	Si-sat 50 at% Rh ^d	
≤ 1000 [02] Mir-sat.		0.55517(3)	0.30707(2)	0.63736(3)	Rh-sat 50.8 at% Rh ^d	
ßRhSi	P213	0.4685	0.50707(1)	0.03730(3)	Rh-sat 49.8 at% Si [81]	
1030-1452 [62]	FeSi	0.4674			Si-sat 50 7 at% Si [81]	
Si-sat.		0.46822(2)			Rh-sat. ^d as-cast	
1080–1452 [62]		(-)				
Rh-sat.						
Rh ₄ Si ₅	P12 ₁ /m	1.234	0.3512	0.5929	[81]	
≤ 1030 [62]	Rh ₄ Si ₅		β = 100.18°			
		1.2335(1)	0.35071(2)	0.59285(4)	d	
			$\beta = 100.18(1)^{\circ}$			
Rh ₃ Si ₄	Pnma	1.880	0.3613	0.5808	[81]	
≤1040 [62]	Rh ₃ Si ₄	1.8800(1)	0.36048(2)	0.58089(3)	d	
τ_1 , CeRhSi ₃	I4mm				[2,3]	
	BaNiSn ₃	0.4204		0.974	[34]	
		0.4269		0.9738	[83]	
		0.4240		0.9801	[84]	
		0.4235		0.9788	[85]	
		0.4244		0.9813	[17]	
		0.4237		0.9760	[20]	
- Co BhCi	DC /mma	0.42311(1)		0.97816(3)	[5 12]	
τ_2 , Ce ₂ RIISI ₃	PO ₃ /IIIIIC	0.9262		0.9420	[5,13]	
	El ₂ KIISI ₃	0.8262		0.8439	[37]	
		0.8527		0.0010	[39]	
		0.8240		0.8444	[40]	
CeaRha Sia		0.0237		0.0445	$0 < x < 0.24^{d}$	
CC2M11_X513+X		0.82359(2)		0.84212(3)	$x_{min} = 0^d$	
		0.82255(1)		0.84605(1)	$x = 0.10^{d}$	
		0.82162(1)		0.84804(2)	$x = 0.18^{d}$	
		0.82068(1)		0.85030(2)	$x_{\rm max} = 0.24^{\rm d}$	
τ_3 , CeRhSi ₂	Стст	0.42661	1.6758	0.41708	[34]	
5. 2	CeNiSi ₂	0.4289	1.6805	0.4232	[35]	
		0.4310	1.6743	0.4216	[36]	
$CeRh_{1-x}Si_{2+x}$					$0 \le x \le 0.32^{d}$	
		0.42629(1)	1.67456(3)	0.41731(1)	$x_{\min} = 0.0^{d}$	
		0.42582(1)	1.67526(2)	0.41773(1)	$x = 0.15^{d}$	
		0.42604(2)	1.67737(6)	0.41787(1)	$x = 0.24^{d} \text{ SC}$	
		0.42566(4)	1.6768(2)	0.41763(4)	$x_{\rm max} = 0.32^{\rm d}$	
τ_4 , Ce ₂₂ Rh ₂₂ Si ₅₆	Unknown				d	
Ce ₂ Rh ₂ Si ₅					[51]	
τ_5 , Ce ₂₀ Rh ₂₇ Si ₅₃ ^a	t ^{re}	0.41391(1)		0.99650(2)	u	
C. Ph. C	BaAl ₄ -deriv.	0.0074	1 102	0.5022	[00]	
$\tau_{6}, Ce_{2}Kn_{3}Sl_{5}$	IDAM	0.9874	1.183	0.5822	[86]	
	U ₂ C0 ₃ S1 ₅	0.989	1.18/	0.582		
a Co PhSi	Immm	0.99110(2) 0.41528(1)	1.17336(3) 0.43548(1)	0.36515(1) 1.91006(E)	d	
<i>1</i> 7, Ce ₃ KIISI ₃	Innini Pa-Al-Co-	0.41526(1)	0.42546(1)	1.81900(5)		
$\tau_{\rm e}$ CeaBha Sia	Da3A12GC2 Dmmn				$0.05 < x < 0.36^{d}$	
$x_{3}, cc_{2}cc_{3} - x_{3} + x_{3}$	CeaRharGeace	0.41035(2)	0.41091(2)	1 72633(7)	$x_{min} = 0.05^{d}$	
	cc21011.35 Cc4.65	0.41103(1)	0.41047(1)	1 72595(2)	$x = 0.27^{d}$	
		0.41167(2)	0.40920(2)	1.72339(6)	$x_{max} = 0.36^{d}$	
τ_0 , CeRh ₂ Si ₂	I4/mmm	0.4086	(-)	1.017	[1]	
-3,22	ThCr ₂ Si ₂	0.4093		1.0185	[21]	
		0.4075		1.013	[23]	
		0.40840		1.01693	T=47.5 K [22]	
		0.40834		1.01713	T=32 K [22]	
		0.40828		1.01705	T=10K [22]	
		0.409		1.018	r.t. [22]	
		0.4087		1.017	[87]	
		0.4088		1.0178	[47]	
		0.40883(1)		1.01748(2)	a a st	
τ_{10} , Ce ₃ Rh _{4-x} Si _{4+x}	Immm	0.400-04	0.44.00000		$0.0 \le x \le 0.1^{\circ}$	
	U ₃ NI ₄ Si ₄	0.40676(1)	0.41409(1)	2.44727(4)	$x_{\min} = 0^{\alpha}$	
C-RL C	pā	0.40813(2)	0.41322(2)	2.4465(1)	$x_{\text{max}} = 0.1^{\circ}$	
τ_{11} , CeKn ₆ SI ₄	P6m2	0.69881(2)		0.37808(2)	-	
r CoPh Si	LICO ₆ P ₄	0 71 20	0.0725	0 5505	[47]	
ι ₁₂ , certi ₃ 31 ₂	FrPh_Si_	0.7126	0.9725	0.5595	[47] [88] SC	
	E11(13512	0.71121	0.96810	0.55828	[48] SC	

Table 1 (continued)

Phase	Space group	Lattice parameters (nm)			Comments
Temperature range (°C)	Prototype	a	b	С	
		0.71252(1)	0.97220(2)	0.55932(1)	d
$ au_{13}$, Ce ₆ Rh ₃₀ Si _{19.3}	P6 ₃ /m	2.2300(1)		0.38398(1)	d
T. Ce. Ph. Si.	$U_6Co_{30}Si_{19}$	1 5608		0 38571	[7] SC
14, 006,00119	SC6C030Si10	1.57257(2)		0.38569(1)	d d
τ_{15} , Ce ₂ Rh ₁₂ Si ₇	$P6_3/m$	0.9706		0.38394	[7] SC
	Ho ₂ Rh ₁₂ As ₇	0.97199(2)		0.38480(1)	d
τ_{16} , Ce ₂ Rh ₁₅ Si ₇	Pm3m	0.8818			[8] SC
τ_{17} CeaRhaSia	Phcm	0.88323(2)	0 79718	1 3271	- [11] SC
	La ₃ Ni ₂ Ga ₂	0.50702	0.75710	1.5271	[11] 50
	522	0.56849(5)	0.79745(7)	1.3289(1)	d
$ au_{18}$, Ce ₄ Rh ₄ Si ₃	C2/c	2.0749(1)	0.57242(3)	0.78741(3)	d
- Co Ph Ci	Sm ₄ Pd ₄ Si ₃	0 7700	$\beta = 110.09(1)^{\circ}$	0.5750	
τ_{19} , Ce ₃ KII ₃ SI ₂	Primu CeaRhaSia	0.7722	1.4822	0.5759	[9] 50
	CC3R113512	0.77176(6)	1.4874(1)	0.57599(5)	[30] d
τ_{20} , CeRh _{1.88} Si _{1.12}	Стст	0.40591(3)	1.7673(1)	0.40736(3)	d
	invCeNiSi ₂	0.40413	1.7730	0.40675	SC for CeRh ₂ Si [10]
τ_{21} , CeRh _{2-x} Si _{1+x}	$I4_1/amd$	0.40521(2)		$2 \in E \in C(2)$	$0.0 \le x \le 0.1^{\text{u}}$
	Cell ₂ 51 [64]	0.40521(2) 0.40560(4)		3.3330(2)	$x_{\min} = 0$ $x_{\min} = 0.1^{d}$
τ_{22} , Ce ₂ Rh _{3+x} Si _{1-x}	R3m	0.10500(1)		5.5 172(1)	$0.08 \le x \le 0.17^{d}$
	Y ₂ Rh ₃ Ge	0.55577(2)		1.17766(6)	$x_{\min}=0.08^{d}$
	_	0.55364(2)		1.19249(5)	$x_{\rm max}=0.17^{\rm d}$
τ_{23} , Ce _{33,3} Rh _{58.2 – 55.2} Si _{8.5 – 11.5}	unknown	1.5260(2)	0.7539(1)	0.5523(2)	$Ce_{33,3}Rh_{55,2}Si_{11,5}$
	UMn ₂ (lt)-deriv	1.5264(1)	0.7530(1)	0.5512(1) 0.5496(1)	$Ce_{33,3}RI_{55,7}SI_{11}$
	olimiz(it) deliv.	0.5135(1)	0.7529(1)	0.5485(1)	Ce _{33,3} Rh _{57,7} Si ₉ ^{d,b}
τ_{24} , Ce ₈ (Rh _{1-x} Si _x) ₂₄ Si	Pm3m				$0.07 \le x \le 0.10^{\rm d}$
	Ce ₈ Pd ₂₄ Sb	0.82166(3)			$x_{\min} = 0.07^{d}$
r Co (Ph Si) Si	Imām	0.82601(1)			$x_{\text{max}} = 0.10^{\text{d}}$
c_{25} , $c_{4}(MI_{1-x}3I_{x})_{12}3I_{12}$	Ce ₄ Rh ₁₂ Si	0.82155(1)			$\chi_{min} = 0$
	412	0.82342(1)			$x_{\text{max}} = 0.03$
τ_{26} , Ce ₁₀ Rh ₅₁ Si ₃₃ ^c	<i>P</i> 6 ₃ / <i>m</i>	2.9107(1)		0.38334(1)	d
> 800 °C	U ₁₀ Co ₅₁ Si ₃₃	0.0001(1)			d
τ_{27} , CeRhSi ⁶ > 800 °C	PZ ₁ 3 LatrSi	0.6231(1)			
2000 C	Lail JI				

^a Lattice parameters are given for BaAl₄-subcell.

^b Lattice parameters are given for UMn₂(lt)-subcell.

^c Phase detected in as-cast alloy but does not participate in phase equilibria at 800 °C.

^d This work.

diffusion in the system combining elements with rather different melting points.

2. Experimental techniques

More than 80 alloys, each with a weight of 0.5 g, were prepared by argon arc-melting from high-purity elements (> 99.9 mass%) on a water-cooled copper hearth. To ensure homogenization, all alloys were re-melted three times. Part of each sample was vacuum-sealed in quartz tubes and annealed at 800 °C for 15–30 days before being quenched by dropping the capsules into cold water. In order to ensure that equilibrium conditions were achieved at this temperature, selected alloys were powdered, cold compacted and sintered at 800 °C for 1 week.

X-ray powder diffraction (XPD) data from as-cast and annealed alloys were collected from a Guinier-Huber 670 image plate system (CuK α_1 ; 8° < 2 θ < 100°) and/or a STOE STADI P transmission diffractometer, equipped with a linear PSD (monochromatic CuK α_1 -radiation; 10° < 2 θ < 90°). Precise lattice parameters were calibrated against Ge as internal standard (a_{Ge} =0.5657906 nm) using program STOE-WinXpow [52].

Single crystals were mechanically isolated from crushed alloys. Inspection on an AXS-GADDS texture goniometer assured high crystal quality, unit cell dimensions and Laue symmetry of the specimens prior to X-ray intensity data collection on a four-circle Nonius Kappa diffractometer equipped with a CCD area detector and employing graphite monochromated MoKa radiation $(\lambda = 0.071073 \text{ nm})$. Orientation matrix and unit cell parameters were derived using program DENZO [53]. No absorption corrections were necessary because of the rather regular crystal shape and small dimensions of the investigated specimens. The structures were solved by direct methods [54] and refined with the SHELXL-97 program [55]. Quantitative X-ray Rietveld refinements were performed with the FULLPROF program [56,57], employing internal tables for X-ray atomic form factors. Atom parameters were standardized with the aid of program STRUC-TURE TIDY [58].

All as-cast and annealed samples were polished via standard procedures and have been examined by scanning electron microscopy (SEM). Phase compositions were determined via electron probe microanalyses (EPMA) on a Carl Zeiss LEO EVO 50XVP instrument with a Link EDX INCA Energy 450 system (Q-BSD detector).

3. Binary systems

The Ce–Si binary phase diagram is used from a recent investigation by Bulanova et al. [59] amended by data on the existence of Ce_2Si_{3-x} (x=0.32) [60]. We accepted the latest carefully re-investigated version of the Ce–Rh binary by Palenzona et al. [61]. The Rh–Si phase diagram is taken from the assessment of Schlesinger [62]. Crystallographic data pertinent to the Ce–Rh–Si system are summarized in Table 1. X-ray powder diffraction intensities for unary and binary phases reported in literature agree well with those observed in ternary Ce–Rh–Si alloys.

4. Results and discussion

4.1. Crystal structures of ternary phases

In the present investigation 25 ternary compounds were found to participate in the phase equilibria of the Ce–Rh–Si system at 800 °C (Fig. 1), 13 of which were already known earlier and were confirmed to exist by XPD phase analysis and EPMA measurements: τ_1 —CeRhSi₃ (BaNiSn₃-type) [2,3], τ_2 —Ce₂RhSi₃ (Er₂RhSi₃-type) [5], τ_3 —CeRhSi₂ (CeNiSi₂-type) [34], τ_4 —Ce₂Rh₂Si₅ (Ce₂Rh₂Si₅ in [51], structure unknown), τ_6 —Ce₂Rh₃Si₅ (U₂Co₃Si₅-type) [45,46], τ_9 —CeRh₂Si₂ (ThCr₂Si₂-type) [1], τ_{12} —CeRh₃Si₂ (ErRh₃Si₂-type) [4,48], τ_{14} —Ce₆Rh₃Oi₁₉ (Sc₆Co₃Oi₁₉-type) [7], τ_{15} —Ce₂Rh₁Si₂ (Own type) [9], τ_{20} —CeRh_{1.88}Si_{1.12} (inverse CeNiSi₂-type) [10], and τ_{17} —Ce₃Rh₂Si₂ (La₃Ni₂Ga₂-type) [11].

4.1.1. New compounds with known structure types

Based on XPD Rietveld refinements the crystal structures of nine new compounds were assigned to known structure types (Table 1). The structural chemistry of these compounds follows the characteristics already outlined for the prototype structures and thus will not be discussed here: τ_7 —Ce₃RhSi₃ (Ba₃Al₂Ge₂-

type), τ_8 —Ce₂Rh_{3-x}Si_{3+x} (Ce₂Rh_{1.35}Ge_{4.65}-type), τ_{10} —Ce₃Rh_{4-x} Si_{4+x} (U₃Ni₄Si₄-type), τ_{11} —CeRh₆Si₄ (LiCo₆P₄-type), τ_{13} —Ce₆Rh₃₀ Si_{19.3} (U₆Co₃₀Si₁₉-type), τ_{18} —Ce₄Rh₄Si₃ (Sm₄Pd₄Si₃-type), τ_{21} —CeRh_{2-x}Si_{1+x} (CeIr₂Si-type), τ_{22} —Ce₂Rh_{3+x}Si_{1-x} (Y₂Rh₃Ge-type) and τ_{24} —Ce₈(Rh_{1-x}Si_x)₂₄Si (Ce₈Pd₂₄Sb-type). The lattice parameters for these compounds and their homogeneity regions are summarized in Table 1. Results of Rietveld refinements of some of the aforementioned compounds are listed in Tables 2–5 with residual values being generally below $R_F < 0.059$: τ_8 —Ce₂Rh_{3-x} Si_{3+x} (at x=0.27), τ_{10} —Ce₃Rh_{4-x}Si_{4+x} (at x=0) and τ_{11} —CeRh₆Si₄ (Table 2); τ_{13} —Ce₆Rh₃₀Si_{19.3} (Table 3); τ_{17} —Ce₃Rh₂Si₂, τ_{18} —Ce₄Rh₄Si₃ and τ_{22} —Ce₂Rh_{3+x}Si_{1-x} (at x=0.15) (Table 4); τ_{24} —Ce₈(Rh_{1-x}Si_x)₂₄Si (at x=0.09) (Table 5).

The ternary phases τ_{11} - τ_{15} are forming in a narrow composition range (see inset in Fig. 1). EPMA analysis of the as-cast alloy Ce₈Rh₅₅Si₃₇ reveals four compositions (Fig. 2c), three of which were attributed to known phases by X-ray measurements: high temperature β RhSi, Rh₂₀Si₁₃ and τ_{11} —CeRh₆Si₄. The fourth phase X (Fig. 2c) has the composition $Ce_{10,5}Rh_{54,4}Si_{35,1}$. In spite of proximity to τ_{14} —Ce₆Rh₃₀Si₁₉, the X-ray pattern of Ce₈Rh₅₅Si₃₇ alloy does not show any trace of τ_{14} . Instead, reflections of two new compounds were detected: τ_{13} —Ce₆Rh₃₀Si_{19.3} and τ_{26} —Ce₁₀Rh₅₁Si₃₃ with structure types of U₆Co₃₀Si₁₉ and $U_{10}Co_{51}Si_{33}$, respectively. Together with the structures of τ_{14} —Ce₆ $Rh_{30}Si_{19}$ (Sc₆Co₃₀Si₁₉-type), τ_{15} —Ce₂Rh₁₂Si₇ (Ho₂Rh₁₂As₇-type) and the newly found phase τ_{11} —CeRh₆Si₄ (LiCo₆Si₄-type) all these structures are members of a hexagonal structure series with linked triangular columns following the general formula $Ce_{n(n+1)}Rh_{6(n^2+1)}Si_{4n^2+3}$ described in [7,58] (for comparison of the structures see Table 6). For τ_{13} we first considered the SmRh₅Ge₃-type [63] as possible structure type, but although Rietveld refinement results in a reliable $R_{\rm F}$ it reveals extremely short interatomic distances $d_{Ce1-Rh1}=0.224 \text{ nm}, d_{Rh7-Rh1}=$ 0.141 nm and was therefore rejected. Analysis of the structure $U_6Co_{30}Si_{19}$ reveals an empty channel at x=y=0 with diameter 0.18781 nm for $U_6Co_{30}Si_{19}$ and 0.23296 nm for an isotypic atom

₀Si

Fig. 1. Isothermal section of the ternary system Ce-Rh-Si at 800 °C. Gray squares indicates sample locations.

Crystallographic data for phases τ_8 —Ce₂Rh_{3-x}Si_{3+x} (x=0.27), τ_{10} —Ce₃Rh_{4-x}Si_{4+x} (x=0) and τ_{11} —CeRh₆Si₄ (X-ray powder diffraction at room temperature, image plate, CuK α_1 radiation, $20 \le 2\theta \le 100^\circ$).

Parameter/compound	τ_8 —Ce ₂ Rh _{3-x} Si _{3+x}	τ_{10} —Ce ₃ Rh ₄ Si ₄	τ ₁₁ —CeRh ₆ Si ₄
Composition, EPMA (at%) Composition from refinement (at%) Formula from refinement Space group Pearson symbol Prototype Lattice parameter (nm) (Ge standard)	$\begin{array}{l} Ce_{25.1}Rh_{34.2}Si_{40.6} \\ Ce_{25.9}Rh_{34.1}Si_{40.9} \\ Ce_{2}Rh_{2.73}Si_{3.27} \\ Pmmn \ (No. 59) \\ oP16 \\ Ce_{2}Rh_{1.35}Ge_{4.65} \\ a=0.41103(1) \\ b=0.41047(1) \\ c=1.72502(2) \end{array}$	$\begin{array}{l} Ce_{27.1}Rh_{36.2}Si_{36.6} \\ Ce_{27.2}Rh_{36.4}Si_{36.4} \\ Ce_{3}Rh_{4}Si_{4} \\ Immm \ (No. \ 71) \\ oP22 \\ U_{3}Ni_{4}Si_{4} \\ a=0.40676(1) \\ b=0.41405(1) \\ c 2.246280(5) \end{array}$	$Ce_{9.0}Rh_{54.7}Si_{36.3}$ $Ce_{9.1}Rh_{54.5}Si_{36.4}$ $CeRh_6Si_4$ $P\delta m2 (No. 187)$ $hP11$ $LiCo_6P_4$ $a=0.69851(1)$
Reflections measured Number of variables $R_{\rm fr} = \Sigma F_{\rm o} - F_{\rm c} /\Sigma F_{\rm o} $ $R_{\rm i} = \Sigma I_{\rm o} - I_{\rm c} /\Sigma I_{\rm o} $ $R_{\rm wP} = [\Sigma w_i y_{\rm oi} - y_{\rm ci} /\Sigma y_{\rm oi}]^{2} ^{1/2}$ $R_{\rm P} = \Sigma y_{\rm oi} - y_{\rm ci} /\Sigma y_{\rm oi} $ $R_{\rm e} = [(N - P + C)/\Sigma w_i y_{\rm oi}^{2})]^{1/2}$ $\chi^{2} = (R_{\rm wP}/R_{\rm e})^{2}$	227 27 0.040 0.057 0.046 0.033 0.020 5.4	26 0.048 0.061 0.040 0.027 0.017 5.5	56 22 0.027 0.026 0.033 0.025 0.015 5.1
Atom parameters Atom site 1 occ.	2 Ce1 in 2 <i>b</i> (1/4,3/4, <i>z</i>); <i>z</i> =0.8469(2) 1.00(-)	2 Ce1 in 2 <i>a</i> (0,0,0) 1,00(-)	1 Ce1 in 1 <i>a</i> (0,0,0)
Biso (10 ² nm ²) Atom site 2 Occ.	1.64(4) 2 Ce2 in $2a (1/4, 1/4, z);$ z=0.6458(3) 1.00(-)	1.59(7) 4 Ce2 in 4 <i>j</i> (1/2,0, <i>z</i>); <i>z</i> =0.3543(1) 1.00(-)	0.92(2) 3 Rh1 in 3k (x, -x, 1/2); x=0.1998(1) 1.00(-)
$B_{iso} (10^{\circ} \text{ nm}^2)$ Atom site 3 Occ. $B_{iso} (10^{2} \text{ nm}^2)$	1.64(4) 2 Rh1 in 2b (1/4,3/4,z); z=0.5022(4) 1.00(-) 0.86(4)	0.75(4) 4 Rh1 in 4 <i>j</i> (1/2,0, <i>z</i>); <i>z</i> =0.0997(1) 1.00(-) 1.19(6)	3 Rh2 in 3 <i>j</i> (<i>x</i> , $-x$,0); <i>x</i> =0.5330(1) 1.00($-$) 1.01(1)
Atom site 4 Occ. B _{iso} (10 ² nm ²)	2 Rh2 in 2 <i>a</i> (1/4,1/4, <i>z</i>); z=0.0010(4) 1.00(-) 0.86(4)	4 Rh2 in 4 <i>i</i> (0,0, <i>z</i>); z=0.2499(1) 1.00(-) 0.81(5)	3 Si1 in 3k (x, -x, 1/2); x=0.7984(3) 1.00(-) 1.49(1)
Atom site 5 Occ. B _{iso} (10 ² nm ²)	2 Si1 in 2 <i>b</i> (1/4,3/4, <i>z</i>); z=0.0879(6) 1.00(-) 0.86(4)	4 Si1 in 4 <i>j</i> (1/2,0, <i>z</i>); <i>z</i> =0.1966(2) 1.00(-) 0.5(1)	1 Si1 in 1 <i>c</i> (1/3,2/3,0) 1.00(-) 1.49(1)
Atom site 6 Occ. B _{iso} (10 ² nm ²)	2 Si2 in 2 <i>a</i> (1/4,1/4, <i>z</i>); z=0.4292(6) 1.00(-) 0.86(4)	4 Si2 in 4 <i>i</i> (0,0, <i>z</i>); <i>z</i> =0.4589(3) 1.00(-) 1.6(1)	
Atom site 7 Occ. B _{iso} (10 ² nm ²)	2 M1 in 2b (1/4,3/4,z); z=0.2062(4) Si 0.65(2)+Rh 0.35 0.86(4)		
Atom site 8 Occ. B _{iso} (10 ² nm ²)	2 M2 in 2 <i>a</i> (1/4,1/4, <i>z</i>); z=0.2798(5) Si 0.62(2)+Rh 0.38 0.86(4)		

arrangement 'Ce₆Rh₃₀Si₁₉' (see Fig. 3a). In case of τ_{13} the channel is broad enough to provide space for an additional atom. A difference Fourier calculation for 'Ce₆Rh₃₀Si₁₉' in a partial *y*,*z*-section at *x*=0 (Fig. 3b) revealed an electron density ~75 e/Å³ at the Wyckoff position 2*b* (0,0,0) and (0,0,1/2). Rietveld refinement for τ_{13} with an additional Si atom in the (0,0,0) position yielded an occupancy of 0.3(1) and R_F =0.042 (Table 3). The corresponding composition Ce₆Rh₃₀Si_{19,3} is in good agreement with the EPMA value (Table 3).

The ternary compound τ_{20} , reported as stoichiometric CeRh₂Si [10] with the fully ordered and inverse orthorhombic CeNiSi₂type structure, unambiguously was detected at 800 °C at a slightly non-stoichiometric composition CeRh_{1.88}Si_{1.12} (Fig. 2e). However, at the stoichiometric composition 1:2:1 we detected a new tetragonal structure (τ_{21}) isotypic to Celr₂Si [64], which coexists in equilibrium with τ_{12} —CeRh₃Si₂ and τ_{23} —Ce(Rh_{1-x}Si_x)₂ (Fig. 2f) and has a small homogeneity range CeRh_{2-x}Si_{1+x} 0.0 $\leq x \leq$ 0.1. A two-phase region between τ_{20} and τ_{21} was neither detected by EPMA nor from XPD analysis.

4.1.2. Single crystal structure determination of τ_3 —CeRh_{1-x}Si_{2+x} and τ_6 —Ce₂Rh₃Si₅

Though the crystal structures of compounds $CeRhSi_2$ and $Ce_2Rh_3Si_5$ are known, neither single crystal nor powder data are available in literature.

A single crystal, broken from as-cast alloy with nominal composition $Ce_{20}Rh_{27}Si_{53}$ revealed orthorhombic symmetry with space group *lbam* and lattice parameters: a=0.99118(2),

 $Crystallographic data \ for \ \tau_{13} \\ -Ce_6Rh_{30}Si_{19,3} \ (X-ray powder \ diffraction \ at \ room \ temperature, \ image \ plate, \ CuK\alpha_1 \ radiation, \ 20 \\ \le 2\theta \\ \le 100^\circ).$

Parameter/compound	τ_{13} —Ce ₆ Rh ₃₀ Si _{19.3}		
Composition, EPMA (at%) Composition from refinement (at%)	$Ce_{10.7}Rh_{54.0}Si_{35.3}$ $Ce_{10.8}Rh_{54.2}Si_{34.9}$		
Formula from refinement Space group	$Ce_6Rh_{30}Si_{19,3}$ $P6_3/m$ (no. 176)		
Pearson symbol Prototype	hP110 UcCo2oSi10		
Lattice parameter (nm)	a=2.2300(1)		
(Ge standard) Reflections measured	c=0.38398(1)		
Number of variables	68		
$R_{\rm F} = \Sigma F_{\rm o} - F_{\rm c} / \Sigma F_{\rm o} $	0.042		
$R_{\rm I} = \sum I_{\rm o} - I_{\rm c} / \sum I_{\rm o} $ $R_{\rm up} = [\sum w_i y_{\rm ci} - y_{\rm ci} ^2 / $	0.057		
$\sum w_i y_{oi} ^2]^{1/2}$			
$R_{\rm P} = \sum y_{\rm oi} - y_{\rm ci} / \sum y_{\rm oi} $	0.053		
$\chi^{2} = [(N - P + C)/2 w_{i} y_{oi})]^{2}$ $\chi^{2} = (R_{wP}/R_{e})^{2}$	4.6		
A			
Atom sites	1 /8/ 15 6 Ce1 in 6h (x,y,1/4);	6 Rh6 in 6h (x,y,1/4);	6 Si3 in 6h (x,y,1/4);
	x=0.5238(5)	x=0.2027(6)	<i>x</i> =0.124(2)
0.00	y=0.1351(5) 1 00(-)	y=0.0536(6) 1.00(-)	y=0.388(2) 1 00(-)
$B_{iso} (10^2 \mathrm{nm}^2)$	0.42(2)	0.58(4) ^a	0.58(4) ^a
Atom sites	2 /9/ 16 6 Ce2 in 6h (x,y,1/4);	6 Rh7 in 6 <i>h</i> (<i>x</i> , <i>y</i> ,1/4);	6 Si4 in 6h (x,y,1/4);
	x=0.2640(4)	x = 0.0454(6)	x=0.761(2)
Occ.	y=0.2297(3) 1.00(-)	y = 0.4914(5) 1.00(-)	y=0.080(2) 1.00(-)
B_{iso} (10 ² nm ²)	1.44(2)	0.58(4) ^a	0.58(4) ^a
Atom sites	3 /10/ 17 6 Rh1 in 6 <i>h</i> (<i>x</i> , <i>y</i> ,1/4);	6 Rh8 in 6h $(x,y,1/4)$;	6 Si5 in 6 <i>h</i> (<i>x</i> , <i>y</i> ,1/4);
	x = 0.5486(5) y = 0.3055(6)	x = 0.0064(5) y = 0.3579(6)	x=0.069(2) y=0.184(2)
Occ.	1.00(-)	1.00(-)	1.00(-)
$B_{iso} (10^2 \mathrm{nm}^2)$	$0.58(4)^{a}$	$0.58(4)^{a}$	$0.58(4)^{a}$
Atom sites	4/11/18 6 Rh2 in 6h (x,y,1/4);	6 Rh9 in 6 <i>h</i> (<i>x</i> , <i>y</i> ,1/4); x=0.3559(6)	6 Si6 in $6h(x,y,1/4)$;
	y = 0.2051(5)	y=0.6095(6)	y=0.579(2)
Occ.	1.00(-)	1.00(-)	1.00(-)
$B_{iso} (10^2 \text{ nm}^2)$	0.58(4)"	0.58(4)*	0.58(4) ^a
Atom sites	5 /12/ 19 6 Rh3 in $6h(x,y,1/4)$; x=0.6573(6)	6 Rh10 in 6h (x,y,1/4); x=0.1048(5)	2 Si7 in 2d (2/3,1/3,1/4)
	y=0.1040(5)	y = 0.0960(5)	
Occ. (10^2 nm^2)	1.00(-)	1.00(-)	1.00(-)
	(12) 20 C P A in Ch (mat/A)	6.51 in Ch (mm.1/4):	0. 56(4)
Atom sites	6 /13/20 6 Kn4 in 6 <i>h</i> (<i>x</i> , <i>y</i> ,1/4); x=0.2891(7)	6 S11 in 6 <i>h</i> (<i>x</i> , <i>y</i> ,1/4); x=0.471(2)	2 Si8 in 2b (0,0,0)
	y=0.3917(6)	y=0.632(2)	
Occ. B. (10^2 nm^2)	1.00(-) 0.58(4) ^a	1.00(-) 0.58(4) ^a	0.3(1) 0.58(4) ^a
	7/14 6 PbF in 6h (xy 1/4).	6 Si2 in $6h(xy, 1/4)$.	0.38(4)
Atom sites	x = 0.1611(6)	x = 0.239(2)	
	<i>y</i> =0.3004(5)	<i>y</i> =0.470(2)	
Occ. Bire (10^2 nm^2)	1.00(-) 0.58(4) ^a	1.00(-) 0.58(4) ^a	
2150 (10 1111)			

^a Constrained parameters.

b=1.17558(3), c=0.58313(1) nm. Direct methods yielded a completely ordered atom arrangement isotypic with the structure type of U₂Co₃Si₅. Results of the refinement for Ce₂Rh₃Si₅, which converged to $R_F = 0.026$ are summarized in Table 7.

The X-ray diffraction pattern of a single crystal from the ascast sample Ce₂₅Rh₁₆Si₅₉ was indexed with orthorhombic symmetry: space group *Cmcm* and lattice parameters a=0.42604(2), b=1.67737(6), c=0.41787(1) nm. The structure type CeNiSi₂ for τ_3 was confirmed by X-ray single crystal refinement. Atom parameters and results of the refinement for CeRh_{0.76}Si_{2.24}, which converged to $R_F = 0.017$ with residual electron densities smaller than $\pm 3.2 \text{ e}^-/\text{Å}^3$, are summarized in Table 6.

4.2. Phase relations and isothermal section of the Ce–Rh–Si system at 800 $^\circ \text{C}$

Table 8 summarizes compositions, structure type and lattice parameters for all the phases involved in three-phase equilibria at 800 °C. Besides the ternary compounds mentioned in Sections

Crystallographic data for phases τ_{17} —Ce₃Rh₂Si₂, τ_{18} —Ce₄Rh₄Si₃ and τ_{22} —Ce₂Rh_{3+x}Si_{1-x} (x=0.15) (X-ray powder diffraction at room temperature, image plate, CuK α_1 radiation, $20 \le 2\theta \le 100^\circ$).

Parameter/compound	τ_{17} —Ce ₃ Rh ₂ Si ₂	τ_{18} —Ce ₄ Rh ₄ Si ₃	$\tau_{22} - Ce_2 Rh_{3+x} Si_{1-x}$
Composition, EPMA (at%) Composition from refinement (at%) Formula from refinement Space group Pearson symbol Prototype Lattice parameter (nm) (Ge standard)	$Ce_{42.6}Rh_{28.5}Si_{29.0}$ $Ce_{42.8}Rh_{28.6}Si_{28.6}$ $Ce_3Rh_2Si_2$ $Pbcm (No. 57)$ $oP28$ $La_3Ni_2Ga_2$ $a=0.56910(1)$ $b=0.79829(1)$	$Ce_{36.4}Rh_{36.6}Si_{27.0}$ $Ce_{36.4}Rh_{36.4}Si_{27.2}$ $Ce_{4}Rh_{4}Si_{3}$ $C2/c (No. 15)$ $mC44$ $Sm_{4}Pd_{4}Si_{3}$ $a=2.07512 (4)$ $b=0.57208 (1)$	$Ce_{33.2}Rh_{52.0}Si_{14.8}$ $Ce_{33.3}Rh_{52.4}Si_{14.3}$ $Ce_2Rh_{3.15}Si_{0.85}$ $R^{3}m$ (No. 166) hR18 Y_2Rh_3Ge a=0.55495(1)
Reflections measured Number of variables $R_F = \Sigma F_o - F_c / \Sigma F_o $ $R_I = \Sigma I_o - I_c / \Sigma I_o $ $R_{wp} = [\Sigma w_i y_{oi} - y_{ci} ^2 / \Sigma w_i y_{oi} ^2]^{1/2}$ $R_p = \Sigma y_{oi} - y_{ci} / \Sigma y_{0i} $ $R_e = [(N - P + C) / \Sigma w_i y_{oi}^2)]^{1/2}$ $\chi^2 = (R_{wp}/R_e)^2$	c = 1.32895(2) 370 31 0.051 0.062 0.034 0.025 0.018 3.6	$\begin{array}{c} c=0.78776(1)\\ \beta=110.11(1)^{\circ}\\ 553\\ 38\\ 0.026\\ 0.031\\ 0.013\\ 0.010\\ 0.009\\ 2.3\\ \end{array}$	c = 1.18616(1) 59 21 0.047 0.051 0.036 0.027 0.015 5.9
Atom parameters Atom site 1 Occ. Biso (10 ² nm ²)	8 Ce1 in 8 <i>e</i> (<i>x,y,z</i>); <i>x</i> =0.1403(2) <i>y</i> =0.3913(1) <i>z</i> =0.1002(1) 1.00(-) 1.53(3)	8 Ce1 in 8 <i>f</i> (<i>x</i> , <i>y</i> , <i>z</i>); <i>x</i> =0.0656(1) <i>y</i> =0.1350(2) <i>z</i> =0.6701(1) 1.00(-) 1.13(3)	6 Ce1 in 6c (0,0, <i>z</i>); <i>z</i> =0.3758(1) 1.00(-) 0.78(2)
Atom site 2 Occ. $B_{iso} (10^2 \text{ nm}^2)$	4 Ce2 in 4d (x,y,1/4); x=0.6418(3) y=0.2449(2) 1.00(-) 0.55(4)	8 Ce2 in $8f(x,y,z)$; x=0.3296(1) y=0.8828(2) z=0.0980(1) 1.00(-) 0.41(3)	9 Rh1 in 9 <i>d</i> (1/2,0,1/2) 1.00(-) 1.03(2)
Atom site 3 Occ. B _{iso} (10 ² nm ²)	8 Rh1 in 8e (x,y,z); x=0.3773(4) y=0.0347(1) z=0.0921(1) 1.00(-) 2.07(4)	8 Rh1 in $8f(x,y,z)$; x = 0.0606(1) y = 0.3635(3) z = 0.0189(2) 1.00(-) 1.51(4)	3 M in 3 <i>a</i> (0,0,0) 0.86(1) Si+0.14 Rh 0.5(1)
Atom site 4 Occ. Big (10 ² nm ²)	4 Si1 in 4d $(x,y,1/4)$; x=0.140(1) y=0.1033(7) 1.00(-) 1.3(2)	8 Rh2 in 8 <i>f</i> (<i>x</i> , <i>y</i> , <i>z</i>); <i>x</i> =0.2212(1) <i>y</i> =0.1474(3) <i>z</i> =0.8203(2) 1.00(-) 1.56(4)	
Atom site 5 Occ. B _{iso} (10 ² nm ²)	4 Si in $4c (x, 1/4, 0);$ x=0.640(1) 1.00(-) 2.9(2)	4 Si1 in 4e (0.y, 1/4); y=0.359(1) 1.00(-) 0.5(1) 9 Si2 is 05(cmm)	
Occ. B _{iso} (10 ² nm ²)		b $312 \ln 8f(x,y,z);$ x=0.1763(2) y=0.8716(9) z=0.5743(7) 1.00(-) 0.37(9)	

4.1.1 and 4.1.2, we detected a ternary phase (τ_{23}) with unknown structure and composition range Ce_{33.3}Rh_{58.2-55.2}Si_{8.5-11.5}. The major reflections of the XPD pattern of τ_{23} may be indexed on the basis of an orthorhombic structure with $a_0 \approx 0.51$ nm, $b_0 \approx 0.55$ nm and $c_0 \approx 0.75$ nm, which suggests isotypism with the orthorhombic low-temperature modification of UMn₂ [65]. However, full profile analysis for this structure model did not result in a satisfactory description of the observed intensities. As the X-ray diffraction pattern reveals additional reflections, several samples with 33 at% of Ce were prepared. X-ray reflections of the phase in ternary samples with 10, 11 and 13 at% of Si were fully indexed on a supercell $a=3a_0$, $b=b_0$, $c=c_0$, unlike the super-

structure reflections of the phase in samples with 8 and 9 at% of Si. As the correct crystal structure is unavailable we are presently unable to decide whether the composition range of τ_{23} contains one or two phases.

Consistent with an incongruent formation of τ_{18} —Ce₄Rh₄Si₃ (Sm₄Pd₄Si₃-type, see Table 2) from the melt, an as-cast sample Ce_{36.5}Rh_{36.5}Si₂₇ (composition close to Ce₄Rh₄Si₃) shows primary grains of τ_9 surrounded by secondary crystals of τ_8 whilst τ_{18} and binary Ce₅Rh₄ crystallize from the last portion of the liquid (see Fig. 2g). It is interesting to note, that ternary τ_{19} and τ_{10} , which both lie close to the described crystallization line, are not observed in the as-cast alloy, and τ_{10} appears only after anneal of

 $Crystallographic data for \tau_{24} - Ce_8 (Rh_{1-x}Si_x)_{24}Si and \tau_{25} - Ce_4 (Rh_{1-x}Si_x)_{12}Si (X-ray powder diffraction at room temperature, image plate, CuK\alpha_1 radiation, 20 \le 2\theta \le 100^\circ).$

Parameter/compound	$\tau_{24} - Ce_8(Rh_{1-x}Si_x)_{24}Si$	$\tau_{25} - Ce_4 (Rh_{1-x}Si_x)_{12}Si$
Composition, EPMA (at%)	Ce _{23.5} Rh _{66.5} Si ₁₀	Ce _{23.5} Rh _{70.5} Si ₆
Composition from refinement (at%)	Ce _{24.2} Rh _{66.4} Si _{9.6}	Ce _{23.5} Rh _{70.6} Si _{5.9}
Formula from refinement	Ce ₈ Rh _{21.9} Si _{3.1}	Ce ₄ Rh ₁₂ Si
Space group	Pm3m (No 221)	Im3m (No 229)
Pearson symbol	cP33	cI34
Prototype	Ce ₈ Pd ₂₄ Sb	Ce ₄ Rh ₁₂ Si
Lattice parameter (nm)	a=0.82501(1)	a=0.82154(1)
(Ge standard)		
Reflections measured	100	43
Number of variables	19	18
$R_{\rm F} = \Sigma F_{\rm o} - F_{\rm c} / \Sigma F_{\rm o} $	0.059	0.035
$R_{\rm I} = \Sigma I_{\rm o} - I_{\rm c} / \Sigma I_{\rm o} $	0.048	0.029
$R_{\rm wP} = [\Sigma w_i y_{\rm oi} - y_{\rm ci} ^2 / \Sigma w_i y_{\rm oi} ^2]^{1/2}$	0.026	0.029
$R_{\rm P} = \Sigma y_{\rm oi} - y_{\rm ci} / \Sigma y_{\rm 0i} $	0.019	0.021
$R_{\rm e} = [(N - P + C)/\Sigma w_i y_{\rm oi}^2)]^{1/2}$	0.014	0.014
$\chi^2 = (R_{\rm wP}/R_{\rm e})^2$	3.4	4.2
Atom parameters		
Atom site 1	8 Ce1 in 8g (<i>x</i> , <i>x</i> , <i>x</i>);	8 Ce1 in 8c (1/4,1/4,1/4)
	<i>x</i> =0.2483(1)	
Occ.	1.00(-)	1.00(-)
$B_{iso} (10^2 nm^2)$	0.78(2)	0.30(2)
Atom site 2	12 Rh1 in 12 <i>h</i> (<i>x</i> ,1/2,0);	12 Rh1 in 12d (1/4,0,1/2)
	x=0.2464(2)	
Occ.	1.00(-)	1.00(-)
$B_{iso} (10^2 nm^2)$	0.93(2)	0.91(3)
Atom site 3	6 M in 6 <i>e</i> (<i>x</i> ,0,0);	12 Rh2 in 12e (x,0,0);
	x=0.2940(2)	x = 0.2729(1)
Occ.	0.64(1) Rh+0.36 Si	1.00(-)
B_{iso} (10 ² nm ²)	1.71(6)	1.80(4)
Atom site 4	6 Rh2 in 6f (x $1/2 1/2$)	2 Si1 in 2 <i>a</i> (0.0.0):
	x = 0.2345(2)	
Occ.	1.00(-)	1.00(-)
$B_{ieo} (10^2 \text{nm}^2)$	2.18(3)	1.5(2)
Atom site 5	1 Si1 in 1g (0.0.0)	
	1 00()	
$P_{1} = (10^{2} \text{ nm}^{2})$	1.00(-)	
D _{iso} (10 mm)	1.7(2)	

this sample at 800 °C (Fig. 2h). Such a behavior indicates that τ_{10} does not form from the liquid but rather forms from a solid-state reaction.

The strong increase of the cell parameters for the ternary homogeneity region of CeRh₃ dissolving Si (Table 1) suggests an interstitial incorporation of Si atoms in the crystal structure. For alloy Ce₂₄Rh₇₃Si₃ Rietveld refinement of the CeRh₃ (Cu₃Au-type) structure with statistical occupation of Si in position (1/2,1/2,1/2) resulted in a slightly lower residual value $R_{\rm F}$ =0.034 (CeRh₃Si_{1-x}) than for Si/Rh substitution in the (0,1/2,1/2) position (Ce(Rh,Si)₃, $R_{\rm F}$ =0.036). With increasing Si content EPMA revealed a constant Ce concentration for the composition region Ce23.5Rh70.5-66.5 Si_{6-10} (23.5 \pm 0.5 at%). The X-ray diffraction pattern for the alloy Ce_{23.5}Rh_{66.5}Si₁₀ was found to be very similar to CeRh₃Si_{1-x}, but additional reflections indicated a two-fold superstructure $(a \sim 2a_{CeRh3})$. Whereas the XPD pattern of the sample with composition Ce23.5Rh69Si7.5 shows the two-fold supercell reflections but with systematic extinctions h+k+l=2n+1 for a bcc structure, the XPD pattern of Ce23.5Rh66.5Si10 reveals a cubic primitive two-fold superstructure. For a comparison of both patterns see Fig. 4. A structural model according to Ce₈Pd₂₄Sb (SG $Pm\bar{3}m$) as proposed by Gordon and DiSalvo [66] was successfully employed to refine the primitive XPD pattern of Ce_{23.5}Rh_{66.5}Si₁₀ (results are presented in Table 2, R_F =0.059, $d_{Si1-Rh2}$ =0.2417 nm). Consequently, Rietveld refinement for the bcc structure (at lower Si-contents) was based on the Ce₈Pd₂₄Sb-type model (Ce₈Rh₂₄ Si_{1-x}) with an additional Si-atom in (1/2, 1/2, 1/2) yielding $R_{\rm F}$ =0.035 (Table 2, $d_{\rm Si1-Rh2}$ =0.2242 nm). For comparison of these structures with CeRh₃ see Fig. 5. In accordance to the existence of these two phases, the Ce_{23.5}Rh_{70.5-66.5}Si₆₋₁₀ region was split into two parts: τ_{24} —Ce₈(Rh_{1-x}Si_x)₂₄Si (0.07 $\leq x \leq 0.10$) and τ_{25} —Ce₄(Rh_{1-x}Si_x)₁₂Si (0.0 \le x \le 0.03), though a two-phase region was not detected by means of EPMA and XPD. It should be noted, that although there is a constant increase of cell parameters within the composition range Ce23,5Rh70,5-66,5 Si₆₋₁₀, the structure of τ_{25} —Ce₄(Rh_{1-x}Si_x)₁₂Si exhibits a Si atom in (1/2,1/2,1/2), whereas this site is vacant in Si-rich τ_{24} . However, Rietveld refinement for τ_{24} with a Si2 atom in (1/2, 1/2, 1/2)resulted in a worse R_F =0.07 and a very short distance $d_{Si2-Rh2}$ =0.2176 nm. It should be furthermore mentioned, that in all XPD patterns of CeRh₃Si_{1-x}, τ_{24} and τ_{25} , two still unindexed reflections appear at $2\theta \approx 12.2^{\circ}$ and 14.1° (Fig. 4) with an intensity comparable to the (1 1 0) reflection and that the 2θ values of these reflections follow the changes in Si concentration. τ_{24} forms directly from the liquid and at 800 °C this phase is in equilibrium with τ_{12} and CeRh₂ (Fig. 2i and j).

A new phase τ_5 —Ce₂₀Rh₂₇Si₅₃ was detected between the compounds τ_1 —CeRhSi₃ and τ_6 —Ce₂Rh₃Si₅. The X-ray pattern of this phase looks very similar to τ_1 and reflections can be indexed on a tetragonal cell with parameters a=0.41391(1) nm, c=0.99650(2) nm, which lie between the parameters of τ_1 (BaNiSn₃-type as an ordered variant of BaAl₄-type; a=0.42311 (1) nm, c=0.97816(3) nm) and τ_9 —CeRh₂Si₂ (ThCr₂Si₂-type as another ordered variant of BaAl₄-type; a=0.40883(1) nm,

Fig. 2. Microstructure of selected Ce–Rh–Si alloys: Ce₁₆Rh₂₈Si₅₆ ((a) as-cast; (b) 800 °C), Ce₈Rh₅₅Si₃₇ ((c) as-cast, X—Ce_{10.5}Rh_{54.4}Si_{35.1}), Ce₄Rh₅₆Si₄₀ ((d) 800 °C), Ce₂₀Rh₄₆Si₃₄ ((e) 800 °C), Ce₂₇Rh₅₃Si₂₀ ((f) 800 °C), Ce_{36.5}Rh_{36.5}Si₂₇ ((g) as-cast; (h) 800 °C), Ce₃₀Rh₆₂Si₈ ((i) as-cast; (j) 800 °C).

Hexagonal structures with $c \approx 0.38$ nm, which belong to the structure series with general formula $Ce_{n(n+1)}Rh_{6(n^2+1)}Si_{4n^2+3}$.

Ν	Compound	Structure type	Pearson symbol	Cell parameters (ni	n)	Crystal chemical formula
				a	c	
∞ 1 2 3 4	$\begin{array}{l} \tau_{11} & - CeRh_6Si_4 \\ \tau_{15} & - Ce_2Rh_{12}Si_7 \\ \tau_{14} & - Ce_6Rh_{30}Si_{19} \\ \tau_{13} & - Ce_6Rh_{30}Si_{19,3} \\ \tau_{25} & - Ce_{10}Rh_{51}Si_{33} \end{array}$	$\begin{array}{l} LiCo_6P_4 \\ Ho_2Rh_{12}As_7 \\ Sc_6Co_{30}Si_{19} \\ U_6Co_{30}Si_{19} \\ U_{10}Co_{51}Si_{33} \end{array}$	hP11 hP24-3 hP62-7 hP110 hP188	0.69881(2) 0.97199(2) 1.57257(2) 2.2300(1) 2.9107(1)	0.37808(2) 0.38480(1) 0.38569(1) 0.38398(1) 0.38334(1)	$\begin{array}{l} CeRh_{6}Si_{4} \\ Ce_{2}Rh_{12}Si_{7} \\ Ce_{6}Rh_{30}Si_{19} \\ Ce_{12}Rh_{60}Si_{38.6} \\ Ce_{20}Rh_{102}Si_{66} \end{array}$

Fig. 3. Crystal structure of ' $Ce_6Rh_{30}Si_{19}$ ' ($U_6Co_{30}Si_{19}$ -type) with empty channels at x=y=0 (a). Difference Fourier map for the structure along the partial section x=0; $-0.15 \le y \le 0.15$; $-0.2 \le z \le 1.2$ (marked by a thick solid line) (b).

c=1.01748(2) nm). Nevertheless the presence of additional reflections presently does not allow a structure designation for τ_5 . The phases τ_1 and τ_5 are, however, clearly distinguishable by BSD contrast (see Fig. 2a and b) and have a distinct grain boundary. The significant difference in the lattice parameters for these phases results in well separated X-ray patterns. In order to exclude the possibility that two different compositions are observed due to phase-segregation during crystallization from the liquid, the two-phase alloy $Ce_{20}Rh_{25}Si_{55}$ ($\tau_1+\tau_5$) was subjected to heat treatment at 800 °C under various conditions: (a) anneal of the bulk as-cast alloy for 14 days, (b) sample was powdered to grain size below 20 µm, cold compacted and sintered for 7 days, (c) powders were hot pressed at 800 °C for 2 h and annealed for 3 days. After all these treatments, the lattice parameters for τ_1 and τ_5 do not show any change that may indicate a single-phase region for these phases at 800 °C. Furthermore, the phases τ_1 , τ_5 and binary RhSi form a ternary equilibrium at 800 °C (Fig. 2b).

The annealing temperature of 800 °C was chosen in order to achieve enhanced diffusion in the system combining elements with rather different melting points. In general this temperature was enough for reaching equilibrium (see Fig. 2), but in some cases additional heat treatment was required. Thus more than three phases were detected by EPMA and XPD analysis for some samples after annealing at 800 °C for 1 month. Particularly it concerns equilibria involving τ_8 and τ_{10} phases. In these cases samples were powdered, cold pressed and annealed at 800 °C for 4 days. Equilibria for these regions were established from comparison of XPD patterns of the samples in different states. Phase analysis of the samples prepared in the region of τ_4 (dashed lines) encountered similar problems, but due to unknown structure of the phase, solid evidence of phase equilibria cannot be presented. Moreover, EPMA of τ_4 shows a 2 at% spread of values of composition.

4.2.1. High- and low-temperature phases

The ternary compound τ_{26} —Ce₁₀Rh₅₁Si₃₃ was detected by means of XPD phase analysis in the as-cast alloy Ce_{10.7}Rh_{53.7}Si_{35.6} together with τ_{11} , τ_{12} and τ_{13} . However, a sample prepared at the stoichiometric composition Ce₁₀Rh₅₁Si₃₃ (=Ce_{10.6}Rh_{53.3}Si_{35.1}) neither contains the τ_{26} phase in as-cast nor in annealed states. We observed τ_{13} as a major phase with small amounts of τ_{11} and τ_{12} (and with Rh₂Si in the as-cast alloy). Because of the fact that during equilibration of the cast alloy Ce_{10.7}Rh_{53.7}Si_{35.6} at 800 °C the amount of τ_{26} —Ce₁₀Rh₅₁Si₃₃ significantly decreased and completely disappeared after annealing at 1050 °C, we consider τ_{26} to be a high temperature phase, which does not participate in the phase equilibria at 800 °C. It should be mentioned that due to the close compositions, EPMA is unable to distinguish between τ_{13} and τ_{26} phases.

Another high temperature phase—CeRhSi—was found in the as-cast sample $Ce_{33}Rh_{33}Si_{34}$ by means of EPMA analysis. The reflections of the unknown phase in the XPD pattern were indexed completely on the basis of a primitive cubic unit cell with cell parameter a=0.6231(1) nm and found to belong to the LaIrSi structure type. The phase completely disappeared after annealing at 800 °C as well as at 1050 °C.

X-ray single crystal data at RT for τ_3 —CeRh_{1-x}Si_{2+x} and τ_6 —Ce₂Rh₃Si₅ (MoK α radiation); structure data are standardized with program Structure Tidy [58].

Parameter/compound	τ_3 —CeRh _{1-x} Si _{2+x}	τ_6 —Ce ₂ Rh ₃ Si ₅
Nominal composition	CeRh _{0.76} Si _{2.24}	Ce ₂ Rh ₃ Si ₅
Crystal size (µm)	$30 \times 30 \times 30$	$50 \times 50 \times 50$
Space group	<i>Cmcm</i> (No. 63)	Ibam (No. 72)
Prototype	CeNiSi ₂	U ₂ Co ₃ Si ₅
Pearson symbol	oS16	oI40
	a=0.42604(2)	a=0.99118(2)
Lattice parameters (nm)	b=1.67737(6)	b=1.17558(3)
	<i>c</i> =0.41787(1)	c=0.58313(1)
Volume (nm ³)	0.29862(3)	0.67947(2)
$\mu_{\rm abs} ({\rm mm^{-1}})$	21.04	21.03
2θ range up to (deg)	72.34	72.49
Reflections in refinement	$398 \ge 4\sigma(F_o)$ of 424	$829 \ge 4\sigma(F_0)$ of 863
	$-6 \le h \le 6$	$-15 \le h \le 16$
index range	$-25 \le K \le 27$	$-19 \le k \le 19$
Calculated density (g/cm^3)	$-0 \le l \le 0$	$-9 \le l \le 9$ 7 12
Number of variables	10	27
$R_r = \Sigma [F_r - F_r] / \Sigma [F_r]$	0.017	0.026
R ₁₋₊	0.011	0.012
wR ²	0.054	0.063
GOF	1.294	1.096
Extinction	0.0024(8)	0.0039(2)
		(_)
Atom parameters		
Atom site 1	4 Cel in $4c(0,y,1/4)$;	8 Ce1 in 8j (x,y,0);
	y=0.39488(2)	x = 0.26612(3)
0.00	1.00()	y=0.36895(2)
$U_{\rm L} = U_{\rm L} (in 10^2 {\rm sm}^2)$	1.00(-)	1.00(-)
U_{11}, U_{22}, U_{33} (iii 10 iiiii) U_{12}, U_{12}, U_{13} (iii 10^2nm^2)	0.0071(2), 0.0003(2), 0.0008(2)	0.0009(2), 0.0049(1), 0.0039(1)
023,013,012 (11 10 1111)	0, 0, 0	0, 0, -0.0004(1)
Atom site 2	4 M1 in 4c (0,y,1/4);	8 Rh1 in 8 <i>j</i> (<i>x</i> , <i>y</i> ,0);
	y=0.18149(4)	x=0.10789(4)
		y=0.13811(3)
Occ.	0.762(4) Rh+0.238 Si	1.00(-)
U_{11}, U_{22}, U_{33} (in 10 ² nm ²)	0.0072(3), 0.0075(3), 0.0058(3)	0.0061(2), 0.0053(2), 0.0086(2)
U_{23}, U_{13}, U_{12} (In IU ² nm ²)	0, 0, 0	0, 0, 0.0001(1)
Atom site 3	4 Si1 in 4c (0,y,1/4);	4 Rh2 in 4b (1/2,0,1/4)
	y = 0.0376(1)	
Occ.	1.00(-)	1.00(-)
U_{11}, U_{22}, U_{33} (in 10^2 nm^2)	0.0094(9), 0.0121(9),0.0079(9)	0.0059(2), 0.0057(2), 0.0064(2)
U_{23}, U_{13}, U_{12} (in 10 ² nm ²)	0, 0, 0	0, 0, 0
Atom site 4	4 Si2 in $4c(0.y.1/4)$:	8 Si1 in 8 <i>i</i> (x.v.0):
	v = 0.7493(1)	x=0.3469(2)
	· · · · · · · · · · · · · · · · · · ·	y = 0.1068(1)
Occ.	1.00(-)	1.00(-)
U_{11}, U_{22}, U_{33} (in $10^2 \mathrm{nm}^2$)	0.0095(8), 0.0066(7),0.0069(8)	0.0165(8), 0.0082(6), 0.0075(6)
U_{23}, U_{13}, U_{12} (in 10 ² nm ²)	0, 0, 0	0, 0, 0.0030(5)
Atom site 5		8 Si2 in $8 \sigma (0 v 1/4)$.
Atom site 5		v = 0.2751(1)
Occ		1.00(-)
$U_{11}U_{22}U_{22}$ (in 10 ² nm ²)		0.0069(6), 0.0096(6), 0.0086(5)
$U_{23}U_{13}U_{12}$ (in 10 ² nm ²)		0. 0.0012(4). 0
Atom site 5		4 Si3 in $4a$ (0,0,1/4);
U(t)		1.00(-)
U_{11}, U_{22}, U_{33} (In 10 ⁻ nm ⁻)		0.0058(8), 0.0061(8), 0.0091(8)
U_{23}, U_{13}, U_{12} (III IU IIIII)		0, 0, 0
Residual density; e/Å ³ max; min	3.13; -1.12	8.02; -2.80
	Ce1 0.0070 0.0068 0.0063	Ce1 0.0070 0.0059 0.0048
Principal mean square atomic displacements of U _{ij}	M1 0.0075 0.0072 0.0058	Rh1 0.0086 0.0061 0.0053
	Si1 0.0121 0.0094 0.0079	Rh2 0.0064 0.0059 0.0057
	Si2 0.0095 0.0069 0.0066	Si1 0.0175 0.0075 0.0073
		Si2 0.0096 0.0092 0.0062
		Si3 0.0091 0.0061 0.0058

Low-temperature binary Rh₃Si₂ was not formed during phase transformation in the Ce₄Rh₅₆Si₄₀ alloy (see Fig. 2d) confirming data of Palenzona et al. [61] on the metastable nature of this phase. Consequently the equilibrated alloy consists of α RhSi, Rh₅Si₃ and τ_{11} —CeRh₆Si₄.

5. Conclusions

Phase relations in the ternary system Ce–Rh–Si have been established for the isothermal section at 800 $^\circ$ C based on X-ray powder and single crystal diffraction, SEM and EMPA on about 80

Data on alloys from three-phase regions in the Ce–Pd–Si system at 800 $^\circ\text{C}.$

Three-phase field	Phase	EPMA (at%)	(at%)		Lattice parameters (nm)			
		Ce	Rh	Si	a	b	С	
$(Si)+CeSi_2+\tau_1$	(Si)	2.6	0.0	97.4	0.54226(3)			
	CeSi ₂	33.2	0.0	66.8	0.42007(2)		1.3943(1)	
	τ_1	19.4	20.4	60.2	0.42311(1)		0.97816(3)	
$(Si)+Rh_3Si_4+\tau_1$	(Si)	0.0	0.0	100.0	0.54246(2)	0.20040(2)	0 50000(2)	
	Rh_3Si_4	0.0	43.0	57.0	1.8800(1)	0.36048(2)	0.58089(3)	
$CeSi_{2} + \tau_{4} + \tau_{2}$	l ₁ CeSia	19.4 33.4	20.7	59.9	0.42319(1) 0.41965(9)		1 3929(5)	
Ce312+11+13	τ ₁	20.2	19.4	60.4	0.42327(5)		0.97837(2)	
	τ3	24.9	16.6	58.5	0.42566(4)	1.6768(2)	0.41763(4)	
$\tau_1 + \tau_4 + \tau_5$	τ ₁	20.0	20.2	59.8	0.42338(2)		0.98074(6)	
	$ au_4$	21.3	22.4	56.3	-	-	-	
	τ_5	19.8	27.3	52.9	0.41424(2)		0.99663(5)	
$\alpha RhSi + \tau_1 + \tau_5$	αRhSi	0.0	50.3	49.7	0.55466(5)	0.30707(2)	0.63658(5)	
	τ_1	19.3	20.8	59.9 52.2	0.42309(1)		0.97835(3)	
$Rh_4Si_5 + \alpha RhSi + \tau_1$	°5 Rh₄Si₅	0.0	44 3	55.7	1 23348(8)	0 35071(2)	0.59404(3) 0.59285(4)	
initial station of	αRhSi	0.0	50.0	50.0	0.55467(7)	0.30773(3)	0.63583(7)	
	τ_1	19.9	20.2	59.9	0.42341(1)		0.97779(5)	
$CeSi+CeSi_2+\tau_2$	CeSi	49.1	0.0	50.9	0.82678(7)	0.39704(3)	0.59768(4)	
	CeSi ₂	33.6	9.4	57.0	0.41789(1)		1.41310(5)	
a. a:	τ ₂	33.3	12.7	54.0	0.82068(1)		0.85030(2)	
$CeSi_2 + \tau_3 + \tau_2$	CeSi ₂	33.4	9.6	57.0	0.41781(1) 0.42618(2)	1 67475(9)	1.41377(2)	
	τ ₃	20.3	21.5	53.2 52.8	0.42618(2) 0.82162(1)	1.6/4/5(8)	0.41747(2) 0.84804(2)	
$\tau_{+} + \tau_{-} + \tau_{-}$	ι <u>2</u> τ.	22.0	22.7	54.9	-	_	-	
4 . 5 . 16	τ ₅	19.9	26.9	53.2	0.41388(1)		0.99486(5)	
	τ_6	20.1	30.1	49.8	0.99003(3)	1.17412(4)	0.58187(2)	
$CeSi+Ce_5Si_4+\tau_7$	CeSi	49.0	0.0	51.0	0.82832(3)	0.39756(1)	0.59601(2)	
	Ce ₅ Si ₄	54.1	0.0	45.9	0.79482(7)		1.5143(2)	
	τ ₇	42.1	14.5	43.4	0.41624(3)	0.42536(3)	1.82139(2)	
$CeSi + \tau_2 + \tau_7$	CeSi	49.7	0.0	50.3	0.82876(9)	0.39694(4)	0.59685(7)	
	τ ₂ τ	33.7 12 7	10.7	49.6	0.82359(2) 0.41528(1)	0.42548(1)	0.84212(3)	
$\tau_{2} + \tau_{2} + \tau_{2}$	τ ₇	33.5	17.0	49.5	0.82283(2)	0.42348(1)	0.84149(3)	
12.17.18	τ ₂	42.4	14.5	43.1	0.41483(3)	0.42493(3)	1.8176(1)	
	τ ₈	25.0	34.1	40.9	0.40968(3)	0.41094(3)	1.7221(1)	
$\tau_2 + \tau_3 + \tau_8$	$ au_2$	33.4	17.0	49.6	0.82403(2)		0.84280(3)	
	τ_3	24.7	25.2	50.1	0.42629(1)	1.67456(3)	0.41731(1)	
	τ_8	25.0	32.7	42.3	0.41243(2)	0.40980(1)	1.72551(7)	
$\tau_3 + \tau_8 + \tau_9$	τ_3	25.1	24.8	50.1	0.42562(3)	1.6716(1)	0.41673(3)	
	τ ₈	25.0	32.7	42.3	0.41167(2)	0.40920(2)	1.72339(6)	
$\tau_{-} + \tau_{-} + \tau_{-}$	ι <u>9</u> τ-	20.0	25.2	40.5	0.40830(1) 0.42613(1)	1 67520(5)	0.41705(1)	
13.16.19	tg Te	20.0	30.2	49.8	0.98971(3)	1.17627(3)	0.58073(2)	
	-8 79	19.9	36.1	44.0	0.40922(1)		1.01504(4)	
$\alpha RhSi + \tau_6 + \tau_9$	αRhSi	0.0	51.2	48.8	0.55456(3)	0.30704(2)	0.63622(3)	
	τ_6	19.8	30.6	49.6	0.98862(4)	1.17548(4)	0.58034(2)	
	τ_9	19.7	39.8	40.5	0.40848(1)		1.01582(3)	
$\alpha RhSi + \tau_9 + \tau_{11}$	αRhSi	0.0	50.6	49.4	0.55496(2)	0.30721(1)	0.63700(2)	
	τ9	19.2	40.5	40.3	0.40889(1)		1.01657(4)	
$\alpha RhSi + Rh_Si_{2} + \tau_{1}$	n RhSi	8.4 0.0	50.8	20.7 49.2	0.55517(3)	0 30707(1)	0.57855(1)	
ukiisi + kii55i3 + t ₁₁	RhaSia	0.0	62.6	37.4	0.53181(1)	1.01257(2)	0.03750(3)	
	T ₁₁	9.1	54.3	36.6	0.69846(1)	1.01257(2)	0.37819(1)	
$Ce_5Si_4 + Ce_3Si_2 + \tau_{17}$	Ce ₅ Si ₄	55.4	0.0	44.6	0.79385(3)		1.5072(1)	
	Ce ₃ Si ₂	60.0	0.0	40.0	0.77908(4)		0.43690(3)	
	τ_{17}	42.6	29.0	28.4	0.56866(3)	0.79739(5)	1.3278(1)	
$Ce_5Si_4 + \tau_7 + \tau_{17}$	Ce ₅ Si ₄	55.0	0.0	45.0	0.79438(3)		1.5098(1)	
	τ ₇	43.0	14.1	42.9	0.41567(2)	0.42595(2)	1.8175(1)	
a + a + a	τ ₁₇	42.3	28.6	29.1	0.56840(3) 0.41552(2)	0.79817(4) 0.42572(2)	1.32864(6)	
17 10 118	τ ₇	26.8	36.5	36.7	0.41555(2) 0.40683(2)	0.42375(2) 0.41365(2)	2 4462(1)	
	τ ₁₈	35.8	36.9	27.3	2.0749(1)	0.57242(3)	0.78741(3)	
	- 10					$\beta = 110.09(1)^{\circ}$		
$\tau_7 + \tau_8 + \tau_{10}$	τ7	42.6	14.5	42.9	0.41470(2)	0.42472(2)	1.83269(7)	
	τ_8	24.8	34.0	41.2	0.41140(1)	0.41038(1)	1.72547(5)	
	τ_{10}	27.4	35.3	37.3	0.40813(2)	0.41322(2)	2.4465(1)	
$\tau_8 + \tau_9 + \tau_{10}$	τ_8	25.2	36.7	38.1	0.41035(2)	0.41091(2)	1.72633(7)	
	τ ₉	20.2	40.3	39.5	0.40883(1)	0 4107 4(0)	1.01748(2)	
7-47-47	τ_{10}	27.1	36.2 40.6	36./	0.40752(2)	0.41374(2)	2.4466(1)	
19 10 118	(9 710	20.0	36.7	35.4	0.40591(3)	0.41438(3)	2 4464(2)	
	τ ₁₀	36.2	36.4	27.4	2.0747(1)	0.57210(2)	0.78697(3)	
	. 10					$\beta = 110.09(1)^{\circ}$		
$\tau_9 + \tau_{19} + \tau_{20}$	τ9	19.8	40.9	39.3	0.40876(1)	,	1.01765(3)	
	τ_{19}	36.9	37.9	25.2	0.77171(3)	1.48725(6)	0.57739(2)	
	τ_{20}	24.7	48.9	26.4	0.40568(2)	1.76691(7)	0.40727(2)	

Table 8 (continued)

Three-phase field	Phase	EPMA (at%))		Lattice parameters (nm)			
		Ce	Rh	Si	a	b	С	
$\tau_9 + \tau_{12} + \tau_{20}$	τ9	19.9	40.8	39.3	0.40871(1)		1.01731(2)	
	τ_{12}	17.0	49.9	33.1	0.71252(1)	0.97220(2)	0.55932(1)	
	τ_{20}	24.7	46.6	28.7	0.40618(1)	1.76413(5)	0.40794(1)	
$\tau_9 + \tau_{11} + \tau_{12}$	τ_9	20.1	39.8	40.1	0.40892(1)		1.01691(4)	
	τ_{11}	9.1	54.6	36.3	0.69899(5)		0.37922(4)	
	τ_{12}	17.1	50.0	32.9	0.71273(2)	0.97240(3)	0.55935(2)	
$\tau_{11} + \tau_{12} + \tau_{13}$	τ_{11}	9.1	54.6	36.3	0.69881(2)		0.37808(2)	
	τ_{12}	16.4	50.4	33.2	0.71268(4)	0.97226(6)	0.55981(4)	
	τ_{13}	10.9	54.4	34.7	2.23250(3)		0.38427(1)	
$\tau_{12} + \tau_{14} + \tau_{16}$	τ_{12}	16.7	50.4	32.9	0.71289(1)	0.97255(2)	0.55960(1)	
	τ_{14}	10.9	54.5	34.6	1.57257(2)		0.38569(1)	
	τ_{16}	8.7	62.6	28.7	0.88329(2)			
$Rh_5Si_3 + Rh_2Si + \tau_{11}$	Rh ₅ Si ₃	0.0	62.7	37.3	0.53179(1)	1.01235(2)	0.38958(1)	
	Rh ₂ Si	0.0	66.5	33.5	0.54138(1)	0.39286(1)	0.73788(2)	
	τ_{11}	9.0	54.8	36.2	0.69853(2)		0.37767(1)	
$Rh_2Si + \tau_{11} + \tau_{15}$	Rh ₂ Si	0.0	66.6	33.4	0.54184(2)	0.39281(2)	0.73812(3)	
	τ_{11}	8.7	55.1	36.2	0.69869(2)		0.37820(1)	
	τ_{15}	9.2	57.2	33.6	0.97233(3)		0.38448(1)	
$Rh_2Si + \tau_{15} + \tau_{16}$	Rh ₂ Si	0.0	67.2	32.8	0.54257(1)	0.39254(1)	0.73800(2)	
	τ_{15}	9.3	57.3	33.4	0.97199(2)		0.38480(1)	
	τ_{16}	8.4	62.5	29.1	0.88323(2)			
Ce_5Rh_4 + $CeRh$ + τ_{19}	Ce ₅ Rh ₄	54.6	45.4	0.0	0.7486(1)	1.4788(2)	0.7657(1)	
	CeRh	49.5	50.5	0.0	0.38528(4)	1.0975(1)	0.41537(4)	
	τ_{19}	37.1	38.0	24.9	0.77153(3)	1.48800(7)	0.57637(3)	
$CeRh + \tau_{19} + \tau_{21}$	CeRh	49.8	50.2	0.0	0.38786(7)	1.0888(2)	0.41517(7)	
	τ_{19}	36.9	38.2	24.9	0.77176(6)	1.4874(1)	0.57599(5)	
	τ_{21}	24.7	50.1	25.2	0.40564(2)		3.5533(3)	
$CeRh + \tau_{21} + \tau_{22}$	CeRh	49.1	50.9	0.0	0.38439(7)	1.0946(2)	0.41739(7)	
	τ_{21}	24.7	50.6	24.7	0.40498(2)		3.5535(3)	
	τ_{22}	32.8	51.7	15.5	0.55577(2)		1.17766(6)	
$\tau_{21} + \tau_{22} + \tau_{23}$	τ_{21}	-	-	-	-		-	
	τ_{22}	33.5	52.7	13.8	0.55364(2)		1.19249(5)	
	τ_{23}	33.4	55.1	11.5	1.5260(2)	0.7539(1)	0.5523(2)	
$CeRh+CeRh_2+\tau_{23}$	CeRh	-	-	-	-	-	-	
	CeRh ₂	33.0	60.3	6.7	0.75220(5)			
	τ_{23}	33.4	58.2	8.4	1.5431(2)	0.7531(1)	0.5480(1)	
$CeRh_2 + \tau_{24} + \tau_{12}$	CeRh ₂	32.6	64.5	2.9	0.75256(2)			
	τ_{24}	23.2	66.5	10.3	0.82524(1)			
	τ_{12}	16.2	50.4	33.4	0.71264(7)	0.9707(2)	0.5591(1)	
$\tau_{24} + \tau_{12} + \tau_{16}$	τ_{24}	22.5	67.3	10.2	0.82548(1)			
	τ_{12}	16.8	50.2	33.0	0.71260(2)	0.97160(3)	0.55913(2)	
	τ_{16}	8.3	62.8	28.9	0.88242(2)			
$Rh+CeRh_3+\tau_{16}$	(Rh)	0.0	100.0	0.0	0.38011(1)			
	CeRh ₃	24.3	71.1	4.6	0.40900(1)			
	τ_{16}	8.2	63.0	28.8	0.88225(1)			
$Rh+Rh_2Si+\tau_{16}$	(Rh)	0.0	98.0	2.0	0.38016(1)			
	Rh ₂ Si	0.0	66.7	33.3	0.54109(1)	0.39294(1)	0.73855(1)	
	T	8.4	63.3	28.3	0.88266(1)			

Fig. 4. XPD pattern for samples $Ce_{23,5}Rh_{66,5}Si_{10}$ (1) and $Ce_{23,5}Rh_{70,5}Si_6$ (2) with Rietveld refinement for primitive $Ce_8(Rh,Si)_{24}Si$ -type and *bcc* $Ce_4Rh_{12}Si$ -type, respectively. Bragg positions are given for the CeRh₃ subcell.

Fig. 5. Increasing Si content starting from binary CeRh₃ (Au₃Cu-type, left panel) yields a two-fold superstructure at low Si-contents with *bcc* symmetry (Ce₄Rh₁₂Si, right panel) and a primitive cubic structure at higher Si-concentrations (Ce₈(Rh,Si)₂₄Si, middle panel) (for details see text).

alloys, which were prepared by various methods employing arc melting under argon or powder reaction sintering. Twenty-seven ternary compounds were detected in the system, and 25 of them

participate in the phase equilibria at 800 °C. Structure prototypes were assigned to nine new Ce-Rh-Si compounds. Phase equilibria are characterized by the absence of cerium solubility in the various rhodium silicides. However, mutual solubilities among cerium silicides and cerium-rhodium compounds are significant.

Acknowledgments

This research is supported by the Austrian National Science Foundation FWF project P18054-Phy. The authors are grateful to the Russian Foundation of Basic Research, project no. 08-03-01072_a, and to the bilateral WTZ Austria-Russia, project 17/06.

Appendix A. Supplementary materials

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.jssc.2010.01.029.

References

- [1] R. Ballestracci, C. R. Acad. Sci. Ser. B 282 (13) (1976) 291.
- [2] P. Lejay, I. Higashi, B. Chevalier, J. Etourneau, P. Hagenmuller, Mater. Res. Bull. 19 (1) (1984) 115.
- [3] P. Haen, P. Lejay, B. Chevalier, B. Lloret, J. Etourneau, M. Sera, J. Less-Common Met. 110 (1-2) (1985) 321.
- [4] B. Chevalier, P. Lejay, J. Etourneau, P. Hagenmuller, Mater. Res. Bull. 18 (3) (1983) 315.
- [5] B. Chevalier, P. Lejay, J. Etourneau, P. Hagenmuller, Solid State Commun. 49 (8) (1984) 753.
- [6] B.I. Shapiev, Interaction of the elements and properties of the alloys in the ternary sustems Ce-{Ru, Rh}-{Si, Ge}, Ph.D. Thesis, Moscow State University, 1993.
- [7] A.I. Tursina, A.V. Gribanov, Y.D. Seropegin, O.I. Bodak, J. Alloys Compd. 367 (1-2) (2004) 142
- [8] A.I. Tursina, A.V. Gribanov, Y.D. Seropegin, Acta Crystallogr. E 57 (7) (2001) i55.
- [9] Y.M. Prots, J. Stepien-Damm, P.S. Salamakha, O.I. Bodak, J. Alloys Compd. 256 (1-2)(1997)166.
- [10] A.I. Tursina, A.V. Gribanov, Y.D. Seropegin, A.A. Novitskii, O.I. Bodak, J. Alloys Compd. 367 (1-2) (2004) 146.
- A.I. Tursina, A.V. Gribanov, Y.D. Seropegin, 2010, to be published.
- [12] K. Cenzual, B. Chabot, E. Parthe, Acta Crystallogr. C 44 (2) (1988) 221.
- [13] R.E. Gladyshevskii, K. Cenzual, E. Parthé, J. Alloys Compd. 189 (2) (1992) 221.
- [14] N. Kimura, Y. Muro, H. Aoki, J. Phys. Soc. Jpn. 76 (5) (2007).
- [15] N. Aso, H. Miyano, H. Yoshizawa, N. Kimura, T. Komatsubara, H. Aoki, J. Magn. Magn. Mater. 310 (2, Part 1) (2007) 602.
- N. Kimura, K. Ito, H. Aoki, S. Uji, T. Terashima, Phys. Rev. Lett. 98 (19) (2007) [16] 197001/1.
- Y. Muro, M. Ishikawa, K. Hirota, Z. Hiroi, N. Takeda, N. Kimura, H. Aoki, J. Phys. [17] Soc. Jpn. 76 (3) (2007) 033706.
- [18] T. Shimoda, Y. Okuda, Y. Takeda, Y. Ida, Y. Miyauchi, T. Kawai, T. Fujie, I. Sugitani, A. Thamizhavel, T.D. Matsuda, Y. Haga, T. Takeuchi, M. Nakashima, R. Settai, Y. Onuki, J. Magn. Magn. Mater. 310 (2) (2007) 308.
- [19] T. Terashima, Y. Takahide, T. Matsumoto, S. Uji, N. Kimura, H. Aoki, H. Harima, Phys. Rev. B 76 (5) (2007) 054506.
- [20] T. Terashima, M. Kimata, S. Uji, T. Sugawara, N. Kimura, H. Aoki, H. Harima, Phys. Rev. B 78 (20) (2008) 205107.
- C. Godart, L.C. Gupta, M.F. Ravet Krill, J. Less-Common Met. 94 (1) (1983) 187.
- B.H. Grier, J.M. Lawrence, V. Murgai, R.D. Parks, Phys. Rev. B 29 (1984) 2664. [22]
- [23] S. Quezel, J. Rossat-Mignod, B. Chevalier, P. Lejay, J. Etourneau, Solid State Commun. 49 (7) (1984) 685.
- [24] R. Movshovich, T. Graf, D. Mandrus, J.D. Thompson, J.L. Smith, Z. Fisk, Phys. Rev. B 53 (13) (1996) 8241.
- [25] R. Settai, A. Misawa, S. Araki, M. Kosaki, K. Sugiyama, T. Takeuchi, K. Kindo, Y. Haga, E. Yamamoto, Y. Onuki, J. Phys. Soc. Jpn. 66 (8) (1997) 2260.
- [26] H. Abe, H. Kitazawa, H. Suzuki, G. Kido, T. Matsumoto, J. Magn. Magn. Mater. 177-181 (Part 1) (1998) 479.
- [27] H. Mori, N. Takeshita, N. Mori, Y. Uwatoko, Physica B 259-261 (1999) 58.
- T. Muramatsu, S. Eda, T.C. Kobayashi, M.I. Eremets, K. Amaya, S. Araki, [28] R. Settai, Y. Onuki, Physica B 259-261 (1999) 61.
- [29] S. Kawarazaki, M. Sato, Y. Miyako, N. Chigusa, K. Watanabe, N. Metoki, Y. Koike, M. Nishi, Phys. Rev. B 61 (6) (2000) 4167.
- [30] S. Araki, R. Settai, T.C. Kobayashi, H. Harima, Y. Onuki, Phys. Rev. B 64 (22) (2001) 224417/1.
- S. Araki, M. Nakashima, R. Settai, T.C. Kobayashi, Y. Onuki, J. Phys.: Condens. Matter 14 (21) (2002) L377.
- [32] M. Ohashi, G. Oomi, S. Koiwai, M. Hedo, Y. Uwatoko, Phys. Rev. B 68 (14) (2003) 144428.

- [33] A. Villaume, D. Aoki, Y. Haga, G. Knebel, R. Boursier, J. Flouquet, J. Phys.: Condens. Matter 20 (1) (2008) 015203.
- [34] B. Chevalier, P. Rogl, K. Hiebl, J. Etourneau, J. Solid State Chem. 107 (2) (1993) 327.
- [35] D.T. Adroja, B.D. Rainford, J. Magn. Magn. Mater. 119 (1-2) (1993) 54.
- [36] J.J. Lu, M.K. Lee, Y.M. Lu, L.Y. Jang, J. Magn. Magn. Mater. 311 (2) (2007) 614.
- [37] A. Szytula, J. Leciejewicz, K. Maletka, J. Magn. Magn. Mater. 118 (3) (1993) 302.
- [38] I. Das, E.V. Sampathkumaran, J. Magn. Magn. Mater. 137 (3) (1994) L239. [39] J. Leciejewicz, N. Stüsser, A. Szytula, A. Zygmunt, J. Magn. Magn. Mater. 147
- (1-2) (1995) 45.
- [40] T. Nakano, K. Sengupta, S. Rayaprol, M. Hedo, Y. Uwatoko, E.V. Sampathkumaran, J. Phys.: Condens. Matter 19 (32) (2007) 326205.
- [41] S. Patil, K.K. Iyer, K. Maiti, E.V. Sampathkumaran, Phys. Rev. B 77 (9) (2008) 094443.
- [42] M. Szlawska, D. Kaczorowski, T. Plackowski, L.D. Gulay, Acta Phys. Pol. A 115 (1) (2009) 132.
- [43] Y. Muro, S. Takahashi, K. Sunahara, K. Motoya, M. Akatsu, N. Shirakawa, J. Magn. Magn. Mater. 310 (2007) e40.
- [44] D. Kaczorowski, in: X International Conference on Crystal Chemistry of Intermetallic Compounds, Lviv, Ukraine, 2007, Book of Abstracts, p. 7.
- [45] C. Godart, L.C. Gupta, C.V. Tomy, S. Patil, R. Nagarajan, E. Beaurepaire, R. Vijayaraghavan, J.V. Yakhmi, Mater. Res. Bull. 23 (1988) 1781.
- [46] S. Ramakrishnan, N.G. Patil, A.D. Chinchure, V.R. Marathe, Phys. Rev. B 64 (6) (2001) 064514.
- [47] T. Graf, M.F. Hundley, R. Modler, R. Movshovich, J.D. Thompson, D. Mandrus, R.A. Fisher, N.E. Phillips, Phys. Rev. B 57 (13) (1998) 7442.
- [48] D. Kaczorowski, T. Komatsubara, Physica B 403 (5-9) (2008) 1362.
- [49] A.P. Pikul, D. Kaczorowski, Acta Phys. Pol. A 115 (1) (2009) 235.
- [50] D. Kaczorowski, Y. Prots, U. Burkhardt, Y. Grin, Intermetallics 15 (3) (2007) 225. [51] D. Kaczorowski, in: 16th International Conference on Solid Compounds of
- Transition Elements, Dresden, Germany, 2008, Book of Abstracts, p. 312.
- [52] STOE WINXPOW (Version 1.06), Stoe & Cie GmbH, Darmstadt, Germany, 1999. [53] Nonius, Kappa CCD Program Package: COLLECT, DENZO, SCALEPACK, SORTAV, Nonius BV, Delft, The Netherlands, 1998.
- [54] G.M. Sheldrick, Acta Crystallogr. A 46 (1990) 467.
- [55] SHELXL-97. Program Crystal Structure Refinement, University of Gottingen, Germany, 1997.
- [56] J. Rodriguez-Carvajal, in: Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France, 1990, Book of Abstracts, p. 127.
- [57] T. Roisnel, J. Rodriguez-Carvajal, in: Proceedings of the European Powder Diffraction Conference (EPDIC7), Mater. Sci. Forum, (2000), Book of Abstracts, p. 118.
- [58] E. Parthé, L. Gelato, B. Chabot, M. Penzo, K. Cenzual, R. Gladyshevskii, TYPIX Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types, Springer-Verlag, Berlin, Heidelberg, 1994.
- [59] M.V. Bulanova, P.N. Zheltov, K.A. Meleshevich, P.A. Saltykov, G. Effenberg, I. Allovs Compd. 345 (2002) 110.
- [60] P. Schobinger-Papamantellos, K.H.J. Buschow, J. Alloys Compd. 198 (1993) 47.
- [61] A. Palenzona, F. Canepa, P. Manfrinetti, J. Alloys Compd. 194 (1) (1993) 63.
- [62] M.E. Schlesinger, J. Phase Equilib. 13 (1) (1992) 54.
- [63] A.V. Morozkin, A.E. Bogdanov, R. Welter, J. Alloys Compd. 340 (1–2) (2002) 49.
- [64] A.V. Gribanov, et al., 2010, in preparation.
- [65] A.C. Lawson, J.L. Smith, J.O. Willis, J.A. O'Rourke, J. Faber, R.L. Hitterman, J. Less-Common Met. 107 (2) (1985) 243.
 [66] R.A. Gordon, F.J. DiSalvo, Z. Naturforsch. B 51 (1) (1996) 52.
- [67] T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak, Binary Alloy Phase Diagrams, ASM International, Materials Park, OH, USA, 1990.
- [68] P. Villars, L.D. Calvert (Eds.), Pearson's Handbook of Crystallographic Data for Intermetallic Phases, ASM, Meterials Park, OH, USA, 1991.
- [69] O. Sologub, P. Salamakha, G. Bocelli, C. Godart, T. Takabatake, J. Alloys Compd. 312 (1-2) (2000) 172.
- [70] A. Raman, J. Less-Common Met. 26 (2) (1972) 199.
- [71] G.L. Olcese, J. Less-Common Met. 33 (1) (1973) 71.
- [72] J. Le Roy, J.-M. Moreau, D. Paccard, E. Parthé, Acta Crystallogr. B 33 (8) (1977) 2414
- [73] A. Raman, J. Less-Common Met. 48 (1) (1976) 111.
- [74] A.E. Dwight, R.A. Conner Jr., J.W. Downey, Acta Crystallogr. 18 (5) (1965) 835
- [75] F. Canepa, M. Minguzzi, G.L. Olcese, J. Magn. Magn. Mater. 63-64 (1987) 591.
- [76] H. Ghassem, A. Raman, Z. Metallkd. 64 (3) (1973) 197.
- [77] E.V. Sampathkumaran, L.C. Gupta, R. Vijayaraghavan, J. Magn. Magn. Mater. 31-34 (1) (1983) 413.
- [78] T. Mihalisin, A. Harrus, S. Raaen, R.D. Parks, J. Appl. Phys. 55 (6) (1984) 1966.
- [79] I.R. Harris, M. Norman, W.E. Gardner, J. Less-Common Met. 29 (3) (1972) 299.
- [80] S.K. Malik, S.K. Dhar, R. Vijayaraghavan, Pramana 22 (3-4) (1984) 329.
- [81] L. Schellenberg, J.L. Jorda, J. Muller, J. Less-Common Met. 109 (2) (1985) 261.
- [82] I. Engström, Acta Chem. Scand. 19 (1965) 1924.
- [83] Y. Muro, D. Eom, N. Takeda, M. Ishikawa, J. Phys. Soc. Jpn. 67 (10) (1998) 3601.
- [84] M.B.T. Tchokonte, P.D. du Plessis, A.M. Strydom, Solid State Commun. 117 (5) (2001) 321.
- [85] A. Krimmel, M. Reelmis, A. Loidl, Appl. Phys. A 74 (2002) S695.
- [86] C. Godart, C.V. Tomy, L.C. Gupta, R. Vijayaraghavan, Solid State Commun. 67 (7) (1988) 677
- B. Chevalier, J. Etourneau, J. Rossat Mignod, R. Calemczuk, E. Bonjour, J. Phys.: [87] Condens. Matter 3 (12) (1991) 1847.
- [88] A. Gribanov, A. Yatsenko, Yu. Seropegin, J. Kurenbaeva, N. Kocherov, O. Bodak, Visnyk Lviv Univ. Ser. Chim. 39 (2000) 96.